Goto

Collaborating Authors

 Shi, Jing-Cheng


Virtual-Taobao: Virtualizing Real-world Online Retail Environment for Reinforcement Learning

arXiv.org Artificial Intelligence

Applying reinforcement learning in physical-world tasks is extremely challenging. It is commonly infeasible to sample a large number of trials, as required by current reinforcement learning methods, in a physical environment. This paper reports our project on using reinforcement learning for better commodity search in Taobao, one of the largest online retail platforms and meanwhile a physical environment with a high sampling cost. Instead of training reinforcement learning in Taobao directly, we present our approach: first we build Virtual Taobao, a simulator learned from historical customer behavior data through the proposed GAN-SD (GAN for Simulating Distributions) and MAIL (multi-agent adversarial imitation learning), and then we train policies in Virtual Taobao with no physical costs in which ANC (Action Norm Constraint) strategy is proposed to reduce over-fitting. In experiments, Virtual Taobao is trained from hundreds of millions of customers' records, and its properties are compared with the real environment. The results disclose that Virtual Taobao faithfully recovers important properties of the real environment. We also show that the policies trained in Virtual Taobao can have significantly superior online performance to the traditional supervised approaches. We hope our work could shed some light on reinforcement learning applications in complex physical environments.


Subset Selection under Noise

Neural Information Processing Systems

The problem of selecting the best $k$-element subset from a universe is involved in many applications. While previous studies assumed a noise-free environment or a noisy monotone submodular objective function, this paper considers a more realistic and general situation where the evaluation of a subset is a noisy monotone function (not necessarily submodular), with both multiplicative and additive noises. To understand the impact of the noise, we firstly show the approximation ratio of the greedy algorithm and POSS, two powerful algorithms for noise-free subset selection, in the noisy environments. We then propose to incorporate a noise-aware strategy into POSS, resulting in the new PONSS algorithm. We prove that PONSS can achieve a better approximation ratio under some assumption such as i.i.d. noise distribution. The empirical results on influence maximization and sparse regression problems show the superior performance of PONSS.