Goto

Collaborating Authors

 Shi, Jieming


G-OSR: A Comprehensive Benchmark for Graph Open-Set Recognition

arXiv.org Artificial Intelligence

--Graph Neural Networks (GNNs) have achieved significant success in machine learning, with wide applications in social networks, bioinformatics, knowledge graphs, and other fields. Most research assumes ideal closed-set environments. However, in real-world open-set environments, graph learning models face challenges in robustness and reliability due to unseen classes. This highlights the need for Graph Open-Set Recognition (GOSR) methods to address these issues and ensure effective GNN application in practical scenarios. Research in GOSR is in its early stages, with a lack of a comprehensive benchmark spanning diverse tasks and datasets to evaluate methods. Moreover, traditional methods, Graph Out-of-Distribution Detection (GOODD), GOSR, and Graph Anomaly Detection (GAD) have mostly evolved in isolation, with little exploration of their interconnections or potential applications to GOSR. T o fill these gaps, we introduce G-OSR, a comprehensive benchmark for evaluating GOSR methods at both the node and graph levels, using datasets from multiple domains to ensure fair and standardized comparisons of effectiveness and efficiency across traditional, GOODD, GOSR, and GAD methods. The results offer critical insights into the generalizability and limitations of current GOSR methods and provide valuable resources for advancing research in this field through systematic analysis of diverse approaches. RAPH learning, as a significant research direction in machine learning, has been widely applied in social network analysis, recommendation systems, bioinformatics, knowledge graphs, traffic planning, and the fields of chemistry and materials science [1]. Graph Neural Networks (GNNs) have demonstrated superior performance in various node classification and graph classification tasks [2]. These methods typically follow a closed-set setting, which assumes that all test classes are among the seen classes accessible during training [3]. However, in real-world scenarios, due to undersampling, out-of-distribution, or anomalous samples, it is highly likely to encounter samples belonging to novel unseen classes, which can significantly impact the safety and robustness of models [4], as illustrated in Figure 1. Guangyao Chen is with Cornell University, Ithaca, NY, USA. Wentao Zhang is with Peking University, Beijing, China. Zhongyi Han is with King Abdullah University of Science and Technology, Thuwal, Saudi Arabia. Rundong He and Yilong Yin are the corresponding authors. Closed-set classification cannot identify unseen classes, while open-set recognition can identify unseen classes and classify nodes belonging to seen classes.


Enhancing Model Defense Against Jailbreaks with Proactive Safety Reasoning

arXiv.org Artificial Intelligence

Large language models (LLMs) are vital for a wide range of applications yet remain susceptible to jailbreak threats, which could lead to the generation of inappropriate responses. Conventional defenses, such as refusal and adversarial training, often fail to cover corner cases or rare domains, leaving LLMs still vulnerable to more sophisticated attacks. We propose a novel defense strategy, Safety Chain-of-Thought (SCoT), which harnesses the enhanced reasoning capabilities of LLMs for proactive assessment of harmful inputs, rather than simply blocking them. SCoT augments any refusal training datasets to critically analyze the intent behind each request before generating answers. By employing proactive reasoning, SCoT enhances the generalization of LLMs across varied harmful queries and scenarios not covered in the safety alignment corpus. Additionally, it generates detailed refusals specifying the rules violated. Comparative evaluations show that SCoT significantly surpasses existing defenses, reducing vulnerability to out-of-distribution issues and adversarial manipulations while maintaining strong general capabilities. The code and data is available at https://anonymous.4open.science/r/SCoT-D4D9.


GNNs-to-MLPs by Teacher Injection and Dirichlet Energy Distillation

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) are fundamental to graph-based learning and excel in node classification tasks. However, GNNs suffer from scalability issues due to the need for multi-hop data during inference, limiting their use in latency-sensitive applications. Recent studies attempt to distill GNNs into multi-layer perceptrons (MLPs) for faster inference. They typically treat GNN and MLP models as single units for distillation, insufficiently utilizing the fine-grained knowledge within GNN layers. In this paper, we propose TINED, a novel method that distills GNNs to MLPs layer-wise through Teacher Injection with fine-tuning and Dirichlet Energy Distillation techniques. We analyze key operations in GNN layers, feature transformation (FT) and graph propagation (GP), and identify that an FT performs the same computation as a fully-connected (FC) layer in MLPs. Thus, we propose directly injecting valuable teacher parameters of an FT in a GNN into an FC layer of the student MLP, assisted by fine-tuning. In TINED, FC layers in an MLP mirror the order of the corresponding FTs and GPs in GNN. We provide a theoretical bound on the approximation of GPs. Moreover, we observe that in a GNN layer, FT and GP operations often have opposing smoothing effects: GP is aggressive, while FT is conservative, in smoothing. Using Dirichlet energy, we design a DE ratio to quantify these smoothing effects and propose Dirichlet Energy Distillation to distill these characteristics from GNN layers to MLP layers. Extensive experiments demonstrate that TINED achieves superior performance over GNNs and state-of-the-art distillation methods under various settings across seven datasets. The code is in supplementary material.


GraSP: Simple yet Effective Graph Similarity Predictions

arXiv.org Artificial Intelligence

Graph similarity computation (GSC) is to calculate the similarity between one pair of graphs, which is a fundamental problem with fruitful applications in the graph community. In GSC, graph edit distance (GED) and maximum common subgraph (MCS) are two important similarity metrics, both of which are NP-hard to compute. Instead of calculating the exact values, recent solutions resort to leveraging graph neural networks (GNNs) to learn data-driven models for the estimation of GED and MCS. Most of them are built on components involving node-level interactions crossing graphs, which engender vast computation overhead but are of little avail in effectiveness. In the paper, we present GraSP, a simple yet effective GSC approach for GED and MCS prediction. GraSP achieves high result efficacy through several key instruments: enhanced node features via positional encoding and a GNN model augmented by a gating mechanism, residual connections, as well as multi-scale pooling. Theoretically, GraSP can surpass the 1-WL test, indicating its high expressiveness. Empirically, extensive experiments comparing GraSP against 10 competitors on multiple widely adopted benchmark datasets showcase the superiority of GraSP over prior arts in terms of both effectiveness and efficiency. The code is available at https://github.com/HaoranZ99/GraSP.


RingFormer: A Ring-Enhanced Graph Transformer for Organic Solar Cell Property Prediction

arXiv.org Artificial Intelligence

Organic Solar Cells (OSCs) are a promising technology for sustainable energy production. However, the identification of molecules with desired OSC properties typically involves laborious experimental research. To accelerate progress in the field, it is crucial to develop machine learning models capable of accurately predicting the properties of OSC molecules. While graph representation learning has demonstrated success in molecular property prediction, it remains underexplored for OSC-specific tasks. Existing methods fail to capture the unique structural features of OSC molecules, particularly the intricate ring systems that critically influence OSC properties, leading to suboptimal performance. To fill the gap, we present RingFormer, a novel graph transformer framework specially designed to capture both atom and ring level structural patterns in OSC molecules. RingFormer constructs a hierarchical graph that integrates atomic and ring structures and employs a combination of local message passing and global attention mechanisms to generate expressive graph representations for accurate OSC property prediction. We evaluate RingFormer's effectiveness on five curated OSC molecule datasets through extensive experiments. The results demonstrate that RingFormer consistently outperforms existing methods, achieving a 22.77% relative improvement over the nearest competitor on the CEPDB dataset.


Effective Clustering on Large Attributed Bipartite Graphs

arXiv.org Artificial Intelligence

Attributed bipartite graphs (ABGs) are an expressive data model for describing the interactions between two sets of heterogeneous nodes that are associated with rich attributes, such as customer-product purchase networks and author-paper authorship graphs. Partitioning the target node set in such graphs into k disjoint clusters (referred to as k-ABGC) finds widespread use in various domains, including social network analysis, recommendation systems, information retrieval, and bioinformatics. However, the majority of existing solutions towards k-ABGC either overlook attribute information or fail to capture bipartite graph structures accurately, engendering severely compromised result quality. The severity of these issues is accentuated in real ABGs, which often encompass millions of nodes and a sheer volume of attribute data, rendering effective k-ABGC over such graphs highly challenging. In this paper, we propose TPO, an effective and efficient approach to k-ABGC that achieves superb clustering performance on multiple real datasets. TPO obtains high clustering quality through two major contributions: (i) a novel formulation and transformation of the k-ABGC problem based on multi-scale attribute affinity specialized for capturing attribute affinities between nodes with the consideration of their multi-hop connections in ABGs, and (ii) a highly efficient solver that includes a suite of carefully-crafted optimizations for sidestepping explicit affinity matrix construction and facilitating faster convergence. Extensive experiments, comparing TPO against 19 baselines over 5 real ABGs, showcase the superior clustering quality of TPO measured against ground-truth labels. Moreover, compared to the state of the arts, TPO is often more than 40x faster over both small and large ABGs.


SlotGAT: Slot-based Message Passing for Heterogeneous Graph Neural Network

arXiv.org Artificial Intelligence

Heterogeneous graphs are ubiquitous to model complex data. There are urgent needs on powerful heterogeneous graph neural networks to effectively support important applications. We identify a potential semantic mixing issue in existing message passing processes, where the representations of the neighbors of a node $v$ are forced to be transformed to the feature space of $v$ for aggregation, though the neighbors are in different types. That is, the semantics in different node types are entangled together into node $v$'s representation. To address the issue, we propose SlotGAT with separate message passing processes in slots, one for each node type, to maintain the representations in their own node-type feature spaces. Moreover, in a slot-based message passing layer, we design an attention mechanism for effective slot-wise message aggregation. Further, we develop a slot attention technique after the last layer of SlotGAT, to learn the importance of different slots in downstream tasks. Our analysis indicates that the slots in SlotGAT can preserve different semantics in various feature spaces. The superiority of SlotGAT is evaluated against 13 baselines on 6 datasets for node classification and link prediction. Our code is at https://github.com/scottjiao/SlotGAT_ICML23/.


Efficient High-Quality Clustering for Large Bipartite Graphs

arXiv.org Artificial Intelligence

A bipartite graph contains inter-set edges between two disjoint vertex sets, and is widely used to model real-world data, such as user-item purchase records, author-article publications, and biological interactions between drugs and proteins. k-Bipartite Graph Clustering (k-BGC) is to partition the target vertex set in a bipartite graph into k disjoint clusters. The clustering quality is important to the utility of k-BGC in various applications like social network analysis, recommendation systems, text mining, and bioinformatics, to name a few. Existing approaches to k-BGC either output clustering results with compromised quality due to inadequate exploitation of high-order information between vertices, or fail to handle sizable bipartite graphs with billions of edges. Motivated by this, this paper presents two efficient k-BGC solutions, HOPE and HOPE+, which achieve state-of-the-art performance on large-scale bipartite graphs. HOPE obtains high scalability and effectiveness through a new k-BGC problem formulation based on the novel notion of high-order perspective (HOP) vectors and an efficient technique for low-rank approximation of HOP vectors. HOPE+ further elevates the k-BGC performance to another level with a judicious problem transformation and a highly efficient two-stage optimization framework. Two variants, HOPE+ (FNEM) and HOPE+ (SNEM) are designed when either the Frobenius norm or spectral norm is applied in the transformation. Extensive experiments, comparing HOPE and HOPE+ against 13 competitors on 10 real-world datasets, exhibit that our solutions, especially HOPE+, are superior to existing methods in terms of result quality, while being up to orders of magnitude faster. On the largest dataset MAG with 1.1 billion edges, HOPE+ is able to produce clusters with the highest clustering accuracy within 31 minutes, which is unmatched by any existing solution for k-BGC.


BOURNE: Bootstrapped Self-supervised Learning Framework for Unified Graph Anomaly Detection

arXiv.org Artificial Intelligence

Graph anomaly detection (GAD) has gained increasing attention in recent years due to its critical application in a wide range of domains, such as social networks, financial risk management, and traffic analysis. Existing GAD methods can be categorized into node and edge anomaly detection models based on the type of graph objects being detected. However, these methods typically treat node and edge anomalies as separate tasks, overlooking their associations and frequent co-occurrences in real-world graphs. As a result, they fail to leverage the complementary information provided by node and edge anomalies for mutual detection. Additionally, state-of-the-art GAD methods, such as CoLA and SL-GAD, heavily rely on negative pair sampling in contrastive learning, which incurs high computational costs, hindering their scalability to large graphs. To address these limitations, we propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE). We extract a subgraph (graph view) centered on each target node as node context and transform it into a dual hypergraph (hypergraph view) as edge context. These views are encoded using graph and hypergraph neural networks to capture the representations of nodes, edges, and their associated contexts. By swapping the context embeddings between nodes and edges and measuring the agreement in the embedding space, we enable the mutual detection of node and edge anomalies. Furthermore, BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs. Extensive experiments conducted on six benchmark datasets demonstrate the superior effectiveness and efficiency of BOURNE in detecting both node and edge anomalies.


Effective Multi-Graph Neural Networks for Illicit Account Detection on Cryptocurrency Transaction Networks

arXiv.org Artificial Intelligence

We study illicit account detection on transaction networks of cryptocurrencies that are increasi_testngly important in online financial markets. The surge of illicit activities on cryptocurrencies has resulted in billions of losses from normal users. Existing solutions either rely on tedious feature engineering to get handcrafted features, or are inadequate to fully utilize the rich semantics of cryptocurrency transaction data, and consequently, yield sub-optimal performance. In this paper, we formulate the illicit account detection problem as a classification task over directed multigraphs with edge attributes, and present DIAM, a novel multi-graph neural network model to effectively detect illicit accounts on large transaction networks. First, DIAM includes an Edge2Seq module that automatically learns effective node representations preserving intrinsic transaction patterns of parallel edges, by considering both edge attributes and directed edge sequence dependencies. Then utilizing the multigraph topology, DIAM employs a new Multigraph Discrepancy (MGD) module with a well-designed message passing mechanism to capture the discrepant features between normal and illicit nodes, supported by an attention mechanism. Assembling all techniques, DIAM is trained in an end-to-end manner. Extensive experiments, comparing against 14 existing solutions on 4 large cryptocurrency datasets of Bitcoin and Ethereum, demonstrate that DIAM consistently achieves the best performance to accurately detect illicit accounts, while being efficient. For instance, on a Bitcoin dataset with 20 million nodes and 203 million edges, DIAM achieves F1 score 96.55%, significantly higher than the F1 score 83.92% of the best competitor. The code is available at https://github.com/TommyDzh/DIAM.