Shi, Hanwen
Enhancing Clinical Trial Patient Matching through Knowledge Augmentation with Multi-Agents
Shi, Hanwen, Zhang, Jin, Zhang, Kunpeng
Matching patients effectively and efficiently for clinical trials is a significant challenge due to the complexity and variability of patient profiles and trial criteria. This paper presents a novel framework, Multi-Agents for Knowledge Augmentation (MAKA), designed to enhance patient-trial matching by dynamically supplementing matching prompts with external, domain-specific knowledge. The MAKA architecture consists of five key components: a knowledge probing agent that detects gaps in domain knowledge, a navigation agent that manages interactions among multiple specialized knowledge augmentation agents, a knowledge augmentation agent that incorporates relevant information into patient-trial matching prompts, a supervision agent aligning the outputs from other agents with the instructions and a matching agent making the final selection decision. This approach enhances the accuracy and contextual richness of patient matching, addresses inherent knowledge gaps in both trail criteria and large language models (LLMs), and improves the alignment between patient characteristics and the criteria.
Toward Adversarial Training on Contextualized Language Representation
Wu, Hongqiu, Liu, Yongxiang, Shi, Hanwen, Zhao, Hai, Zhang, Min
Beyond the success story of adversarial training (AT) in the recent text domain on top of pre-trained language models (PLMs), our empirical study showcases the inconsistent gains from AT on some tasks, e.g. commonsense reasoning, named entity recognition. This paper investigates AT from the perspective of the contextualized language representation outputted by PLM encoders. We find the current AT attacks lean to generate sub-optimal adversarial examples that can fool the decoder part but have a minor effect on the encoder. However, we find it necessary to effectively deviate the latter one to allow AT to gain. Based on the observation, we propose simple yet effective \textit{Contextualized representation-Adversarial Training} (CreAT), in which the attack is explicitly optimized to deviate the contextualized representation of the encoder. It allows a global optimization of adversarial examples that can fool the entire model. We also find CreAT gives rise to a better direction to optimize the adversarial examples, to let them less sensitive to hyperparameters. Compared to AT, CreAT produces consistent performance gains on a wider range of tasks and is proven to be more effective for language pre-training where only the encoder part is kept for downstream tasks. We achieve the new state-of-the-art performances on a series of challenging benchmarks, e.g. AdvGLUE (59.1 $ \rightarrow $ 61.1), HellaSWAG (93.0 $ \rightarrow $ 94.9), ANLI (68.1 $ \rightarrow $ 69.3).
Few-shot Incremental Event Detection
Wang, Hao, Shi, Hanwen, Duan, Jianyong
Event detection tasks can enable the quick detection of events from texts and provide powerful support for downstream natural language processing tasks. Most such methods can only detect a fixed set of predefined event classes. To extend them to detect a new class without losing the ability to detect old classes requires costly retraining of the model from scratch. Incremental learning can effectively solve this problem, but it requires abundant data of new classes. In practice, however, the lack of high-quality labeled data of new event classes makes it difficult to obtain enough data for model training. To address the above mentioned issues, we define a new task, few-shot incremental event detection, which focuses on learning to detect a new event class with limited data, while retaining the ability to detect old classes to the extent possible. We created a benchmark dataset IFSED for the few-shot incremental event detection task based on FewEvent and propose two benchmarks, IFSED-K and IFSED-KP. Experimental results show that our approach has a higher F1-score than baseline methods and is more stable.