Shi, Guangming
Adversarial Learning for Implicit Semantic-Aware Communications
Lu, Zhimin, Xiao, Yong, Sun, Zijian, Li, Yingyu, Shi, Guangming, Chen, Xianfu, Bennis, Mehdi, Poor, H. Vincent
Semantic communication is a novel communication paradigm that focuses on recognizing and delivering the desired meaning of messages to the destination users. Most existing works in this area focus on delivering explicit semantics, labels or signal features that can be directly identified from the source signals. In this paper, we consider the implicit semantic communication problem in which hidden relations and closely related semantic terms that cannot be recognized from the source signals need to also be delivered to the destination user. We develop a novel adversarial learning-based implicit semantic-aware communication (iSAC) architecture in which the source user, instead of maximizing the total amount of information transmitted to the channel, aims to help the recipient learn an inference rule that can automatically generate implicit semantics based on limited clue information. We prove that by applying iSAC, the destination user can always learn an inference rule that matches the true inference rule of the source messages. Experimental results show that the proposed iSAC can offer up to a 19.69 dB improvement over existing non-inferential communication solutions, in terms of symbol error rate at the destination user.
Time-sensitive Learning for Heterogeneous Federated Edge Intelligence
Xiao, Yong, Zhang, Xiaohan, Shi, Guangming, Krunz, Marwan, Nguyen, Diep N., Hoang, Dinh Thai
Real-time machine learning has recently attracted significant interest due to its potential to support instantaneous learning, adaptation, and decision making in a wide range of application domains, including self-driving vehicles, intelligent transportation, and industry automation. We investigate real-time ML in a federated edge intelligence (FEI) system, an edge computing system that implements federated learning (FL) solutions based on data samples collected and uploaded from decentralized data networks. FEI systems often exhibit heterogenous communication and computational resource distribution, as well as non-i.i.d. data samples, resulting in long model training time and inefficient resource utilization. Motivated by this fact, we propose a time-sensitive federated learning (TS-FL) framework to minimize the overall run-time for collaboratively training a shared ML model. Training acceleration solutions for both TS-FL with synchronous coordination (TS-FL-SC) and asynchronous coordination (TS-FL-ASC) are investigated. To address straggler effect in TS-FL-SC, we develop an analytical solution to characterize the impact of selecting different subsets of edge servers on the overall model training time. A server dropping-based solution is proposed to allow slow-performance edge servers to be removed from participating in model training if their impact on the resulting model accuracy is limited. A joint optimization algorithm is proposed to minimize the overall time consumption of model training by selecting participating edge servers, local epoch number. We develop an analytical expression to characterize the impact of staleness effect of asynchronous coordination and straggler effect of FL on the time consumption of TS-FL-ASC. Experimental results show that TS-FL-SC and TS-FL-ASC can provide up to 63% and 28% of reduction, in the overall model training time, respectively.
Imitation Learning-based Implicit Semantic-aware Communication Networks: Multi-layer Representation and Collaborative Reasoning
Xiao, Yong, Sun, Zijian, Shi, Guangming, Niyato, Dusit
Semantic communication has recently attracted significant interest from both industry and academia due to its potential to transform the existing data-focused communication architecture towards a more generally intelligent and goal-oriented semantic-aware networking system. Despite its promising potential, semantic communications and semantic-aware networking are still at their infancy. Most existing works focus on transporting and delivering the explicit semantic information, e.g., labels or features of objects, that can be directly identified from the source signal. The original definition of semantics as well as recent results in cognitive neuroscience suggest that it is the implicit semantic information, in particular the hidden relations connecting different concepts and feature items that plays the fundamental role in recognizing, communicating, and delivering the real semantic meanings of messages. Motivated by this observation, we propose a novel reasoning-based implicit semantic-aware communication network architecture that allows multiple tiers of CDC and edge servers to collaborate and support efficient semantic encoding, decoding, and interpretation for end-users. We introduce a new multi-layer representation of semantic information taking into consideration both the hierarchical structure of implicit semantics as well as the personalized inference preference of individual users. We model the semantic reasoning process as a reinforcement learning process and then propose an imitation-based semantic reasoning mechanism learning (iRML) solution for the edge servers to leaning a reasoning policy that imitates the inference behavior of the source user. A federated GCN-based collaborative reasoning solution is proposed to allow multiple edge servers to jointly construct a shared semantic interpretation model based on decentralized knowledge datasets.
Progressive Graph Convolution Network for EEG Emotion Recognition
Zhou, Yijin, Li, Fu, Li, Yang, Ji, Youshuo, Shi, Guangming, Zheng, Wenming, Zhang, Lijian, Chen, Yuanfang, Cheng, Rui
Studies in the area of neuroscience have revealed the relationship between emotional patterns and brain functional regions, demonstrating that dynamic relationships between different brain regions are an essential factor affecting emotion recognition determined through electroencephalography (EEG). Moreover, in EEG emotion recognition, we can observe that clearer boundaries exist between coarse-grained emotions than those between fine-grained emotions, based on the same EEG data; this indicates the concurrence of large coarse- and small fine-grained emotion variations. Thus, the progressive classification process from coarse- to fine-grained categories may be helpful for EEG emotion recognition. Consequently, in this study, we propose a progressive graph convolution network (PGCN) for capturing this inherent characteristic in EEG emotional signals and progressively learning the discriminative EEG features. To fit different EEG patterns, we constructed a dual-graph module to characterize the intrinsic relationship between different EEG channels, containing the dynamic functional connections and static spatial proximity information of brain regions from neuroscience research. Moreover, motivated by the observation of the relationship between coarse- and fine-grained emotions, we adopt a dual-head module that enables the PGCN to progressively learn more discriminative EEG features, from coarse-grained (easy) to fine-grained categories (difficult), referring to the hierarchical characteristic of emotion. To verify the performance of our model, extensive experiments were conducted on two public datasets: SEED-IV and multi-modal physiological emotion database (MPED).
Federated Traffic Synthesizing and Classification Using Generative Adversarial Networks
Xu, Chenxin, Xia, Rong, Xiao, Yong, Li, Yingyu, Shi, Guangming, Chen, Kwang-cheng
With the fast growing demand on new services and applications as well as the increasing awareness of data protection, traditional centralized traffic classification approaches are facing unprecedented challenges. This paper introduces a novel framework, Federated Generative Adversarial Networks and Automatic Classification (FGAN-AC), which integrates decentralized data synthesizing with traffic classification. FGAN-AC is able to synthesize and classify multiple types of service data traffic from decentralized local datasets without requiring a large volume of manually labeled dataset or causing any data leakage. Two types of data synthesizing approaches have been proposed and compared: computation-efficient FGAN (FGAN-\uppercase\expandafter{\romannumeral1}) and communication-efficient FGAN (FGAN-\uppercase\expandafter{\romannumeral2}). The former only implements a single CNN model for processing each local dataset and the later only requires coordination of intermediate model training parameters. An automatic data classification and model updating framework has been proposed to automatically identify unknown traffic from the synthesized data samples and create new pseudo-labels for model training. Numerical results show that our proposed framework has the ability to synthesize highly mixed service data traffic and can significantly improve the traffic classification performance compared to existing solutions.
Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT Networks
Xiao, Yong, Li, Yingyu, Shi, Guangming, Poor, H. Vincent
This paper studies an edge intelligence-based IoT network in which a set of edge servers learn a shared model using federated learning (FL) based on the datasets uploaded from a multi-technology-supported IoT network. The data uploading performance of IoT network and the computational capacity of edge servers are entangled with each other in influencing the FL model training process. We propose a novel framework, called federated edge intelligence (FEI), that allows edge servers to evaluate the required number of data samples according to the energy cost of the IoT network as well as their local data processing capacity and only request the amount of data that is sufficient for training a satisfactory model. We evaluate the energy cost for data uploading when two widely-used IoT solutions: licensed band IoT (e.g., 5G NB-IoT) and unlicensed band IoT (e.g., Wi-Fi, ZigBee, and 5G NR-U) are available to each IoT device. We prove that the cost minimization problem of the entire IoT network is separable and can be divided into a set of subproblems, each of which can be solved by an individual edge server. We also introduce a mapping function to quantify the computational load of edge servers under different combinations of three key parameters: size of the dataset, local batch size, and number of local training passes. Finally, we adopt an Alternative Direction Method of Multipliers (ADMM)-based approach to jointly optimize energy cost of the IoT network and average computing resource utilization of edge servers. We prove that our proposed algorithm does not cause any data leakage nor disclose any topological information of the IoT network. Simulation results show that our proposed framework significantly improves the resource efficiency of the IoT network and edge servers with only a limited sacrifice on the model convergence performance.
Towards Self-learning Edge Intelligence in 6G
Xiao, Yong, Shi, Guangming, Li, Yingyu, Saad, Walid, Poor, H. Vincent
Edge intelligence, also called edge-native artificial intelligence (AI), is an emerging technological framework focusing on seamless integration of AI, communication networks, and mobile edge computing. It has been considered to be one of the key missing components in the existing 5G network and is widely recognized to be one of the most sought-after functions for tomorrow's wireless 6G cellular systems. In this article, we identify the key requirements and challenges of edge-native AI in 6G. A self-learning architecture based on self-supervised Generative Adversarial Nets (GANs) is introduced to \blu{demonstrate the potential performance improvement that can be achieved by automatic data learning and synthesizing at the edge of the network}. We evaluate the performance of our proposed self-learning architecture in a university campus shuttle system connected via a 5G network. Our result shows that the proposed architecture has the potential to identify and classify unknown services that emerge in edge computing networks. Future trends and key research problems for self-learning-enabled 6G edge intelligence are also discussed.
DarwinML: A Graph-based Evolutionary Algorithm for Automated Machine Learning
Qi, Fei, Xia, Zhaohui, Tang, Gaoyang, Yang, Hang, Song, Yu, Qian, Guangrui, An, Xiong, Lin, Chunhuan, Shi, Guangming
Abstract--As an emerging field, Automated Machine Learning (AutoML) aims to reduce or eliminate manual operations that require expertise in machine learning. In this paper, a graphbased architectureis employed to represent flexible combinations of ML models, which provides a large searching space compared to tree-based and stacking-based architectures. Based on this, an evolutionary algorithm is proposed to search for the best architecture, where the mutation and heredity operators are the key for architecture evolution. With Bayesian hyper-parameter optimization, the proposed approach can automate the workflow of machine learning. On the PMLB dataset, the proposed approach shows the state-of-the-art performance compared with TPOT, Autostacker, and auto-sklearn. Some of the optimized models are with complex structures which are difficult to obtain in manual design. I. INTRODUCTION Various models have been thoroughly investigated by the machine learning (ML) community. In theory, these models are general and applicable to both academia and industry. However, it could be time-consuming to build a solution on a specific ML task, even for a ML expert.
Knowledge-guided Semantic Computing Network
Shi, Guangming, Zhang, Zhongqiang, Gao, Dahua, Xie, Xuemei, Feng, Yihao, Ma, Xinrui, Liu, Danhua
It is very useful to integrate human knowledge and experience into traditional neural networks for faster learning speed, fewer training samples and better interpretability. However, due to the obscured and indescribable black box model of neural networks, it is very difficult to design its architecture, interpret its features and predict its performance. Inspired by human visual cognition process, we propose a knowledge-guided semantic computing network which includes two modules: a knowledge-guided semantic tree and a data-driven neural network. The semantic tree is pre-defined to describe the spatial structural relations of different semantics, which just corresponds to the tree-like description of objects based on human knowledge. The object recognition process through the semantic tree only needs simple forward computing without training. Besides, to enhance the recognition ability of the semantic tree in aspects of the diversity, randomicity and variability, we use the traditional neural network to aid the semantic tree to learn some indescribable features. Only in this case, the training process is needed. The experimental results on MNIST and GTSRB datasets show that compared with the traditional data-driven network, our proposed semantic computing network can achieve better performance with fewer training samples and lower computational complexity. Especially, Our model also has better adversarial robustness than traditional neural network with the help of human knowledge.
Real-Time Illegal Parking Detection System Based on Deep Learning
Xie, Xuemei, Wang, Chenye, Chen, Shu, Shi, Guangming, Zhao, Zhifu
The increasing illegal parking has become more and more serious. Nowadays the methods of detecting illegally parked vehicles are based on background segmentation. However, this method is weakly robust and sensitive to environment. Benefitting from deep learning, this paper proposes a novel illegal vehicle parking detection system. Illegal vehicles captured by camera are firstly located and classified by the famous Single Shot MultiBox Detector (SSD) algorithm. To improve the performance, we propose to optimize SSD by adjusting the aspect ratio of default box to accommodate with our dataset better. After that, a tracking and analysis of movement is adopted to judge the illegal vehicles in the region of interest (ROI). Experiments show that the system can achieve a 99% accuracy and real-time (25FPS) detection with strong robustness in complex environments.