Shi, Boxin
Data-Free Learning of Student Networks
Chen, Hanting, Wang, Yunhe, Xu, Chang, Yang, Zhaohui, Liu, Chuanjian, Shi, Boxin, Xu, Chunjing, Xu, Chao, Tian, Qi
Learning portable neural networks is very essential for computer vision for the purpose that pre-trained heavy deep models can be well applied on edge devices such as mobile phones and micro sensors. Most existing deep neural network compression and speed-up methods are very effective for training compact deep models, when we can directly access the training dataset. However, training data for the given deep network are often unavailable due to some practice problems (e.g. privacy, legal issue, and transmission), and the architecture of the given network are also unknown except some interfaces. To this end, we propose a novel framework for training efficient deep neural networks by exploiting generative adversarial networks (GANs). To be specific, the pre-trained teacher networks are regarded as a fixed discriminator and the generator is utilized for derivating training samples which can obtain the maximum response on the discriminator. Then, an efficient network with smaller model size and computational complexity is trained using the generated data and the teacher network, simultaneously. Efficient student networks learned using the proposed Data-Free Learning (DFL) method achieve 92.22% and 74.47% accuracies without any training data on the CIFAR-10 and CIFAR-100 datasets, respectively. Meanwhile, our student network obtains an 80.56% accuracy on the CelebA benchmark.
Robust Student Network Learning
Guo, Tianyu, Xu, Chang, He, Shiyi, Shi, Boxin, Xu, Chao, Tao, Dacheng
Deep neural networks bring in impressive accuracy in various applications, but the success often relies on the heavy network architecture. Taking well-trained heavy networks as teachers, classical teacher-student learning paradigm aims to learn a student network that is lightweight yet accurate. In this way, a portable student network with significantly fewer parameters can achieve a considerable accuracy which is comparable to that of teacher network. However, beyond accuracy, robustness of the learned student network against perturbation is also essential for practical uses. Existing teacher-student learning frameworks mainly focus on accuracy and compression ratios, but ignore the robustness. In this paper, we make the student network produce more confident predictions with the help of the teacher network, and analyze the lower bound of the perturbation that will destroy the confidence of the student network. Two important objectives regarding prediction scores and gradients of examples are developed to maximize this lower bound, so as to enhance the robustness of the student network without sacrificing the performance. Experiments on benchmark datasets demonstrate the efficiency of the proposed approach to learn robust student networks which have satisfying accuracy and compact sizes.