Shi, Boxin
SymmeTac: Symmetric Color LED Driven Efficient Photometric Stereo Reconstruction Methods for Camera-based Tactile Sensors
Ren, Jieji, Guo, Heng, Yang, Zaiyan, Zhang, Jinnuo, Dong, Yueshi, Zhang, Ningbin, Shi, Boxin, Zou, Jiang, Gu, Guoying
Camera-based tactile sensors can provide high-density surface geometry and force information for robots in the interaction process with the target. However, most existing methods cannot achieve accurate reconstruction with high efficiency, impeding the applications in robots. To address these problems, we propose an efficient two-shot photometric stereo method based on symmetric color LED distribution. Specifically, based on the sensing response curve of CMOS channels, we design orthogonal red and blue LEDs as illumination to acquire four observation maps using channel-splitting in a two-shot manner. Subsequently, we develop a two-shot photometric stereo theory, which can estimate accurate surface normal and greatly reduce the computing overhead in magnitude. Finally, leveraging the characteristics of the camera-based tactile sensor, we optimize the algorithm to be a highly efficient, pure addition operation. Simulation and real-world experiments demonstrate the advantages of our approach. Further details are available on: https://github.com/Tacxels/SymmeTac.
DreamPolish: Domain Score Distillation With Progressive Geometry Generation
Cheng, Yean, Cai, Ziqi, Ding, Ming, Zheng, Wendi, Huang, Shiyu, Dong, Yuxiao, Tang, Jie, Shi, Boxin
We introduce DreamPolish, a text-to-3D generation model that excels in producing refined geometry and high-quality textures. In the geometry construction phase, our approach leverages multiple neural representations to enhance the stability of the synthesis process. Instead of relying solely on a view-conditioned diffusion prior in the novel sampled views, which often leads to undesired artifacts in the geometric surface, we incorporate an additional normal estimator to polish the geometry details, conditioned on viewpoints with varying field-of-views. We propose to add a surface polishing stage with only a few training steps, which can effectively refine the artifacts attributed to limited guidance from previous stages and produce 3D objects with more desirable geometry. The key topic of texture generation using pretrained text-to-image models is to find a suitable domain in the vast latent distribution of these models that contains photorealistic and consistent renderings. In the texture generation phase, we introduce a novel score distillation objective, namely domain score distillation (DSD), to guide neural representations toward such a domain. We draw inspiration from the classifier-free guidance (CFG) in textconditioned image generation tasks and show that CFG and variational distribution guidance represent distinct aspects in gradient guidance and are both imperative domains for the enhancement of texture quality. Extensive experiments show our proposed model can produce 3D assets with polished surfaces and photorealistic textures, outperforming existing state-of-the-art methods.
SpikeNVS: Enhancing Novel View Synthesis from Blurry Images via Spike Camera
Dai, Gaole, Wang, Zhenyu, Xu, Qinwen, Lu, Ming, Chen, Wen, Shi, Boxin, Zhang, Shanghang, Huang, Tiejun
One of the most critical factors in achieving sharp Novel View Synthesis (NVS) using neural field methods like Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) is the quality of the training images. However, Conventional RGB cameras are susceptible to motion blur. In contrast, neuromorphic cameras like event and spike cameras inherently capture more comprehensive temporal information, which can provide a sharp representation of the scene as additional training data. Recent methods have explored the integration of event cameras to improve the quality of NVS. The event-RGB approaches have some limitations, such as high training costs and the inability to work effectively in the background. Instead, our study introduces a new method that uses the spike camera to overcome these limitations. By considering texture reconstruction from spike streams as ground truth, we design the Texture from Spike (TfS) loss. Since the spike camera relies on temporal integration instead of temporal differentiation used by event cameras, our proposed TfS loss maintains manageable training costs. It handles foreground objects with backgrounds simultaneously. We also provide a real-world dataset captured with our spike-RGB camera system to facilitate future research endeavors. We conduct extensive experiments using synthetic and real-world datasets to demonstrate that our design can enhance novel view synthesis across NeRF and 3DGS. The code and dataset will be made available for public access.
EvPlug: Learn a Plug-and-Play Module for Event and Image Fusion
Jiang, Jianping, Zhou, Xinyu, Duan, Peiqi, Shi, Boxin
Event cameras and RGB cameras exhibit complementary characteristics in imaging: the former possesses high dynamic range (HDR) and high temporal resolution, while the latter provides rich texture and color information. This makes the integration of event cameras into middle-and high-level RGB-based vision tasks highly promising. However, challenges arise in multi-modal fusion, data annotation, and model architecture design. In this paper, we propose EvPlug, which learns a plug-and-play event and image fusion module from the supervision of the existing RGB-based model. The learned fusion module integrates event streams with image features in the form of a plug-in, endowing the RGB-based model to be robust to HDR and fast motion scenes while enabling high temporal resolution inference. Our method only requires unlabeled event-image pairs (no pixel-wise alignment required) and does not alter the structure or weights of the RGB-based model. We demonstrate the superiority of EvPlug in several vision tasks such as object detection, semantic segmentation, and 3D hand pose estimation.
EvHandPose: Event-based 3D Hand Pose Estimation with Sparse Supervision
Jiang, Jianping, Li, Jiahe, Zhang, Baowen, Deng, Xiaoming, Shi, Boxin
Event camera shows great potential in 3D hand pose estimation, especially addressing the challenges of fast motion and high dynamic range in a low-power way. However, due to the asynchronous differential imaging mechanism, it is challenging to design event representation to encode hand motion information especially when the hands are not moving (causing motion ambiguity), and it is infeasible to fully annotate the temporally dense event stream. In this paper, we propose EvHandPose with novel hand flow representations in Event-to-Pose module for accurate hand pose estimation and alleviating the motion ambiguity issue. To solve the problem under sparse annotation, we design contrast maximization and hand-edge constraints in Pose-to-IWE (Image with Warped Events) module and formulate EvHandPose in a weakly-supervision framework. We further build EvRealHands, the first large-scale real-world event-based hand pose dataset on several challenging scenes to bridge the real-synthetic domain gap. Experiments on EvRealHands demonstrate that EvHandPose outperforms previous event-based methods under all evaluation scenes, achieves accurate and stable hand pose estimation with high temporal resolution in fast motion and strong light scenes compared with RGB-based methods, generalizes well to outdoor scenes and another type of event camera, and shows the potential for the hand gesture recognition task.
L-CAD: Language-based Colorization with Any-level Descriptions using Diffusion Priors
Chang, Zheng, Weng, Shuchen, Zhang, Peixuan, Li, Yu, Li, Si, Shi, Boxin
Language-based colorization produces plausible and visually pleasing colors under the guidance of user-friendly natural language descriptions. Previous methods implicitly assume that users provide comprehensive color descriptions for most of the objects in the image, which leads to suboptimal performance. In this paper, we propose a unified model to perform language-based colorization with any-level descriptions. We leverage the pretrained cross-modality generative model for its robust language understanding and rich color priors to handle the inherent ambiguity of any-level descriptions. We further design modules to align with input conditions to preserve local spatial structures and prevent the ghosting effect. With the proposed novel sampling strategy, our model achieves instance-aware colorization in diverse and complex scenarios. Extensive experimental results demonstrate our advantages of effectively handling any-level descriptions and outperforming both language-based and automatic colorization methods. The code and pretrained models are available at: https://github.com/changzheng123/L-CAD.
Deep Learning Methods for Calibrated Photometric Stereo and Beyond: A Survey
Ju, Yakun, Lam, Kin-Man, Xie, Wuyuan, Zhou, Huiyu, Dong, Junyu, Shi, Boxin
Photometric stereo recovers the surface normals of an object from multiple images with varying shading cues, i.e., modeling the relationship between surface orientation and intensity at each pixel. Photometric stereo prevails in superior per-pixel resolution and fine reconstruction details. However, it is a complicated problem because of the non-linear relationship caused by non-Lambertian surface reflectance. Recently, various deep learning methods have shown a powerful ability in the context of photometric stereo against non-Lambertian surfaces. This paper provides a comprehensive review of existing deep learning-based calibrated photometric stereo methods. We first analyze these methods from different perspectives, including input processing, supervision, and network architecture. We summarize the performance of deep learning photometric stereo models on the most widely-used benchmark data set. This demonstrates the advanced performance of deep learning-based photometric stereo methods. Finally, we give suggestions and propose future research trends based on the limitations of existing models.
Real-Time Intermediate Flow Estimation for Video Frame Interpolation
Huang, Zhewei, Zhang, Tianyuan, Heng, Wen, Shi, Boxin, Zhou, Shuchang
Real-time video frame interpolation (VFI) is very useful in video processing, media players, and display devices. We propose RIFE, a Real-time Intermediate Flow Estimation algorithm for VFI. To realize a high-quality flow-based VFI method, RIFE uses a neural network named IFNet that can estimate the intermediate flows end-to-end with much faster speed. A privileged distillation scheme is designed for stable IFNet training and improve the overall performance. RIFE does not rely on pre-trained optical flow models and can support arbitrary-timestep frame interpolation with the temporal encoding input. Experiments demonstrate that RIFE achieves state-of-the-art performance on several public benchmarks. Compared with the popular SuperSlomo and DAIN methods, RIFE is 4--27 times faster and produces better results. Furthermore, RIFE can be extended to wider applications thanks to temporal encoding. The code is available at https://github.com/megvii-research/ECCV2022-RIFE.
Distilling portable Generative Adversarial Networks for Image Translation
Chen, Hanting, Wang, Yunhe, Shu, Han, Wen, Changyuan, Xu, Chunjing, Shi, Boxin, Xu, Chao, Xu, Chang
Despite Generative Adversarial Networks (GANs) have been widely used in various image-to-image translation tasks, they can be hardly applied on mobile devices due to their heavy computation and storage cost. Traditional network compression methods focus on visually recognition tasks, but never deal with generation tasks. Inspired by knowledge distillation, a student generator of fewer parameters is trained by inheriting the low-level and high-level information from the original heavy teacher generator. To promote the capability of student generator, we include a student discriminator to measure the distances between real images, and images generated by student and teacher generators. An adversarial learning process is therefore established to optimize student generator and student discriminator. Qualitative and quantitative analysis by conducting experiments on benchmark datasets demonstrate that the proposed method can learn portable generative models with strong performance.
Bringing Giant Neural Networks Down to Earth with Unlabeled Data
Tang, Yehui, You, Shan, Xu, Chang, Shi, Boxin, Xu, Chao
Compressing giant neural networks has gained much attention for their extensive applications on edge devices such as cellphones. During the compressing process, one of the most important procedures is to retrain the pre-trained models using the original training dataset. However, due to the consideration of security, privacy or commercial profits, in practice, only a fraction of sample training data are made available, which makes the retraining infeasible. To solve this issue, this paper proposes to resort to unlabeled data in hand that can be cheaper to acquire. Specifically, we exploit the unlabeled data to mimic the classification characteristics of giant networks, so that the original capacity can be preserved nicely. Nevertheless, there exists a dataset bias between the labeled and unlabeled data, disturbing the mimicking to some extent. We thus fix this bias by an adversarial loss to make an alignment on the distributions of their low-level feature representations. We further provide theoretical discussions about how the unlabeled data help compressed networks to generalize better. Experimental results demonstrate that the unlabeled data can significantly improve the performance of the compressed networks.