Goto

Collaborating Authors

 Sheth, Amit


Neurosymbolic Value-Inspired AI (Why, What, and How)

arXiv.org Artificial Intelligence

The rapid progression of Artificial Intelligence (AI) systems, facilitated by the advent of Large Language Models (LLMs), has resulted in their widespread application to provide human assistance across diverse industries. This trend has sparked significant discourse centered around the ever-increasing need for LLM-based AI systems to function among humans as part of human society, sharing human values, especially as these systems are deployed in high-stakes settings (e.g., healthcare, autonomous driving, etc.). Towards this end, neurosymbolic AI systems are attractive due to their potential to enable easy-to-understand and interpretable interfaces for facilitating value-based decision-making, by leveraging explicit representations of shared values. In this paper, we introduce substantial extensions to Khaneman's System one/two framework and propose a neurosymbolic computational framework called Value-Inspired AI (VAI). It outlines the crucial components essential for the robust and practical implementation of VAI systems, aiming to represent and integrate various dimensions of human values. Finally, we further offer insights into the current progress made in this direction and outline potential future directions for the field.


Building Trustworthy NeuroSymbolic AI Systems: Consistency, Reliability, Explainability, and Safety

arXiv.org Artificial Intelligence

Explainability and Safety engender Trust. These require a model to exhibit consistency and reliability. To achieve these, it is necessary to use and analyze data and knowledge with statistical and symbolic AI methods relevant to the AI application - neither alone will do. Consequently, we argue and seek to demonstrate that the NeuroSymbolic AI approach is better suited for making AI a trusted AI system. We present the CREST framework that shows how Consistency, Reliability, user-level Explainability, and Safety are built on NeuroSymbolic methods that use data and knowledge to support requirements for critical applications such as health and well-being. This article focuses on Large Language Models (LLMs) as the chosen AI system within the CREST framework. LLMs have garnered substantial attention from researchers due to their versatility in handling a broad array of natural language processing (NLP) scenarios. For example, ChatGPT and Google's MedPaLM have emerged as highly promising platforms for providing information in general and health-related queries, respectively. Nevertheless, these models remain black boxes despite incorporating human feedback and instruction-guided tuning. For instance, ChatGPT can generate unsafe responses despite instituting safety guardrails. CREST presents a plausible approach harnessing procedural and graph-based knowledge within a NeuroSymbolic framework to shed light on the challenges associated with LLMs.


SEPSIS: I Can Catch Your Lies -- A New Paradigm for Deception Detection

arXiv.org Artificial Intelligence

Deception is the intentional practice of twisting information. It is a nuanced societal practice deeply intertwined with human societal evolution, characterized by a multitude of facets. This research explores the problem of deception through the lens of psychology, employing a framework that categorizes deception into three forms: lies of omission, lies of commission, and lies of influence. The primary focus of this study is specifically on investigating only lies of omission. We propose a novel framework for deception detection leveraging NLP techniques. We curated an annotated dataset of 876,784 samples by amalgamating a popular large-scale fake news dataset and scraped news headlines from the Twitter handle of Times of India, a well-known Indian news media house. Each sample has been labeled with four layers, namely: (i) the type of omission (speculation, bias, distortion, sounds factual, and opinion), (ii) colors of lies(black, white, etc), and (iii) the intention of such lies (to influence, etc) (iv) topic of lies (political, educational, religious, etc). We present a novel multi-task learning pipeline that leverages the dataless merging of fine-tuned language models to address the deception detection task mentioned earlier. Our proposed model achieved an F1 score of 0.87, demonstrating strong performance across all layers including the type, color, intent, and topic aspects of deceptive content. Finally, our research explores the relationship between lies of omission and propaganda techniques. To accomplish this, we conducted an in-depth analysis, uncovering compelling findings. For instance, our analysis revealed a significant correlation between loaded language and opinion, shedding light on their interconnectedness. To encourage further research in this field, we will be making the models and dataset available with the MIT License, making it favorable for open-source research.


L3 Ensembles: Lifelong Learning Approach for Ensemble of Foundational Language Models

arXiv.org Artificial Intelligence

Fine-tuning pre-trained foundational language models (FLM) for specific tasks is often impractical, especially for resource-constrained devices. This necessitates the development of a Lifelong Learning (L3) framework that continuously adapts to a stream of Natural Language Processing (NLP) tasks efficiently. We propose an approach that focuses on extracting meaningful representations from unseen data, constructing a structured knowledge base, and improving task performance incrementally. We conducted experiments on various NLP tasks to validate its effectiveness, including benchmarks like GLUE and SuperGLUE. We measured good performance across the accuracy, training efficiency, and knowledge transfer metrics. Initial experimental results show that the proposed L3 ensemble method increases the model accuracy by 4% ~ 36% compared to the fine-tuned FLM. Furthermore, L3 model outperforms naive fine-tuning approaches while maintaining competitive or superior performance (up to 15.4% increase in accuracy) compared to the state-of-the-art language model (T5) for the given task, STS benchmark.


Factify 2: A Multimodal Fake News and Satire News Dataset

arXiv.org Artificial Intelligence

The internet gives the world an open platform to express their views and share their stories. While this is very valuable, it makes fake news one of our society's most pressing problems. Manual fact checking process is time consuming, which makes it challenging to disprove misleading assertions before they cause significant harm. This is he driving interest in automatic fact or claim verification. Some of the existing datasets aim to support development of automating fact-checking techniques, however, most of them are text based. Multi-modal fact verification has received relatively scant attention. In this paper, we provide a multi-modal fact-checking dataset called FACTIFY 2, improving Factify 1 by using new data sources and adding satire articles. Factify 2 has 50,000 new data instances. Similar to FACTIFY 1.0, we have three broad categories - support, no-evidence, and refute, with sub-categories based on the entailment of visual and textual data. We also provide a BERT and Vison Transformer based baseline, which achieves 65% F1 score in the test set. The baseline codes and the dataset will be made available at https://github.com/surya1701/Factify-2.0.


Memotion 3: Dataset on Sentiment and Emotion Analysis of Codemixed Hindi-English Memes

arXiv.org Artificial Intelligence

Memes are the new-age conveyance mechanism for humor on social media sites. Memes often include an image and some text. Memes can be used to promote disinformation or hatred, thus it is crucial to investigate in details. We introduce Memotion 3, a new dataset with 10,000 annotated memes. Unlike other prevalent datasets in the domain, including prior iterations of Memotion, Memotion 3 introduces Hindi-English Codemixed memes while prior works in the area were limited to only the English memes. We describe the Memotion task, the data collection and the dataset creation methodologies. We also provide a baseline for the task.


Exploring the Relationship between LLM Hallucinations and Prompt Linguistic Nuances: Readability, Formality, and Concreteness

arXiv.org Artificial Intelligence

As Large Language Models (LLMs) have advanced, they have brought forth new challenges, with one of the prominent issues being LLM hallucination. While various mitigation techniques are emerging to address hallucination, it is equally crucial to delve into its underlying causes. Consequently, in this preliminary exploratory investigation, we examine how linguistic factors in prompts, specifically readability, formality, and concreteness, influence the occurrence of hallucinations. Our experimental results suggest that prompts characterized by greater formality and concreteness tend to result in reduced hallucination. However, the outcomes pertaining to readability are somewhat inconclusive, showing a mixed pattern.


A Comprehensive Survey on Rare Event Prediction

arXiv.org Artificial Intelligence

Rare event prediction involves identifying and forecasting events with a low probability using machine learning and data analysis. Due to the imbalanced data distributions, where the frequency of common events vastly outweighs that of rare events, it requires using specialized methods within each step of the machine learning pipeline, i.e., from data processing to algorithms to evaluation protocols. Predicting the occurrences of rare events is important for real-world applications, such as Industry 4.0, and is an active research area in statistical and machine learning. This paper comprehensively reviews the current approaches for rare event prediction along four dimensions: rare event data, data processing, algorithmic approaches, and evaluation approaches. Specifically, we consider 73 datasets from different modalities (i.e., numerical, image, text, and audio), four major categories of data processing, five major algorithmic groupings, and two broader evaluation approaches. This paper aims to identify gaps in the current literature and highlight the challenges of predicting rare events. It also suggests potential research directions, which can help guide practitioners and researchers.


Overview of Memotion 3: Sentiment and Emotion Analysis of Codemixed Hinglish Memes

arXiv.org Artificial Intelligence

Analyzing memes on the internet has emerged as a crucial endeavor due to the impact this multi-modal form of content wields in shaping online discourse. Memes have become a powerful tool for expressing emotions and sentiments, possibly even spreading hate and misinformation, through humor and sarcasm. In this paper, we present the overview of the Memotion 3 shared task, as part of the DeFactify 2 workshop at AAAI-23. The task released an annotated dataset of Hindi-English code-mixed memes based on their Sentiment (Task A), Emotion (Task B), and Emotion intensity (Task C). Each of these is defined as an individual task and the participants are ranked separately for each task. Over 50 teams registered for the shared task and 5 made final submissions to the test set of the Memotion 3 dataset. CLIP, BERT modifications, ViT etc. were the most popular models among the participants along with approaches such as Student-Teacher model, Fusion, and Ensembling. The best final F1 score for Task A is 34.41, Task B is 79.77 and Task C is 59.82.


Why Do We Need Neuro-symbolic AI to Model Pragmatic Analogies?

arXiv.org Artificial Intelligence

A hallmark of intelligence is the ability to use a familiar domain to make inferences about a less familiar domain, known as analogical reasoning. In this article, we delve into the performance of Large Language Models (LLMs) in dealing with progressively complex analogies expressed in unstructured text. We discuss analogies at four distinct levels of complexity: lexical analogies, syntactic analogies, semantic analogies, and pragmatic analogies. As the analogies become more complex, they require increasingly extensive, diverse knowledge beyond the textual content, unlikely to be found in the lexical co-occurrence statistics that power LLMs. To address this, we discuss the necessity of employing Neuro-symbolic AI techniques that combine statistical and symbolic AI, informing the representation of unstructured text to highlight and augment relevant content, provide abstraction and guide the mapping process. Our knowledge-informed approach maintains the efficiency of LLMs while preserving the ability to explain analogies for pedagogical applications.