Shenlong Wang
Efficient Graph Generation with Graph Recurrent Attention Networks
Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K. Duvenaud, Raquel Urtasun, Richard Zemel
We propose a new family of efficient and expressive deep generative models of graphs, called Graph Recurrent Attention Networks (GRANs). Our model generates graphs one block of nodes and associated edges at a time. The block size and sampling stride allow us to trade off sample quality for efficiency. Compared to previous RNN-based graph generative models, our framework better captures the auto-regressive conditioning between the already-generated and to-be-generated parts of the graph using Graph Neural Networks (GNNs) with attention. This not only reduces the dependency on node ordering but also bypasses the long-term bottleneck caused by the sequential nature of RNNs. Moreover, we parameterize the output distribution per block using a mixture of Bernoulli, which captures the correlations among generated edges within the block.
Proximal Deep Structured Models
Shenlong Wang, Sanja Fidler, Raquel Urtasun
Many problems in real-world applications involve predicting continuous-valued random variables that are statistically related. In this paper, we propose a powerful deep structured model that is able to learn complex non-linear functions which encode the dependencies between continuous output variables. We show that inference in our model using proximal methods can be efficiently solved as a feedfoward pass of a special type of deep recurrent neural network. We demonstrate the effectiveness of our approach in the tasks of image denoising, depth refinement and optical flow estimation.