Goto

Collaborating Authors

 Sheng, Tao


ReCo: A Dataset for Residential Community Layout Planning

arXiv.org Artificial Intelligence

Layout planning is centrally important in the field of architecture and urban design. Among the various basic units carrying urban functions, residential community plays a vital part for supporting human life. Therefore, the layout planning of residential community has always been of concern, and has attracted particular attention since the advent of deep learning that facilitates the automated layout generation and spatial pattern recognition. However, the research circles generally suffer from the insufficiency of residential community layout benchmark or high-quality datasets, which hampers the future exploration of data-driven methods for residential community layout planning. The lack of datasets is largely due to the difficulties of large-scale real-world residential data acquisition and long-term expert screening. In order to address the issues and advance a benchmark dataset for various intelligent spatial design and analysis applications in the development of smart city, we introduce Residential Community Layout Planning (ReCo) Dataset, which is the first and largest open-source vector dataset related to real-world community to date. ReCo Dataset is presented in multiple data formats with 37,646 residential community layout plans, covering 598,728 residential buildings with height information. ReCo can be conveniently adapted for residential community layout related urban design tasks, e.g., generative layout design, morphological pattern recognition and spatial evaluation. To validate the utility of ReCo in automated residential community layout planning, two Generative Adversarial Network (GAN) based generative models are further applied to the dataset. We expect ReCo Dataset to inspire more creative and practical work in intelligent design and beyond. The ReCo Dataset is published at: https://www.kaggle.com/fdudsde/reco-dataset.


Chat-REC: Towards Interactive and Explainable LLMs-Augmented Recommender System

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated their significant potential to be applied for addressing various application tasks. However, traditional recommender systems continue to face great challenges such as poor interactivity and explainability, which actually also hinder their broad deployment in real-world systems. To address these limitations, this paper proposes a novel paradigm called Chat-Rec (Chat-GPT Augmented Recommender System) that innovatively augments LLMs for building conversational recommender systems by converting user profiles and historical interactions into prompts. Chat-Rec is demonstrated to be effective in learning user preferences and establishing connections between users and products through in-context learning, which also makes the recommendation process more interactive and explainable. What's more, within the Chat-Rec framework, user's preferences can transfer to different products for cross-domain recommendations, and prompt-based injection of information into LLMs can also handle the cold-start scenarios with new items. In our experiments, Chat-Rec effectively improve the results of top-k recommendations and performs better in zero-shot rating prediction task. Chat-Rec offers a novel approach to improving recommender systems and presents new practical scenarios for the implementation of AIGC (AI generated content) in recommender system studies.


Modeling Global Distribution for Federated Learning with Label Distribution Skew

arXiv.org Artificial Intelligence

Federated learning achieves joint training of deep models by connecting decentralized data sources, which can significantly mitigate the risk of privacy leakage. However, in a more general case, the distributions of labels among clients are different, called ``label distribution skew''. Directly applying conventional federated learning without consideration of label distribution skew issue significantly hurts the performance of the global model. To this end, we propose a novel federated learning method, named FedMGD, to alleviate the performance degradation caused by the label distribution skew issue. It introduces a global Generative Adversarial Network to model the global data distribution without access to local datasets, so the global model can be trained using the global information of data distribution without privacy leakage. The experimental results demonstrate that our proposed method significantly outperforms the state-of-the-art on several public benchmarks. Code is available at \url{https://github.com/Sheng-T/FedMGD}.


Low-Power Computer Vision: Status, Challenges, Opportunities

arXiv.org Artificial Intelligence

Computer vision has achieved impressive progress in recent years. Meanwhile, mobile phones have become the primary computing platforms for millions of people. In addition to mobile phones, many autonomous systems rely on visual data for making decisions and some of these systems have limited energy (such as unmanned aerial vehicles also called drones and mobile robots). These systems rely on batteries and energy efficiency is critical. This article serves two main purposes: (1) Examine the state-of-the-art for low-power solutions to detect objects in images. Since 2015, the IEEE Annual International Low-Power Image Recognition Challenge (LPIRC) has been held to identify the most energy-efficient computer vision solutions. This article summarizes 2018 winners' solutions. (2) Suggest directions for research as well as opportunities for low-power computer vision.