Goto

Collaborating Authors

 Sheng, Shili


Safe POMDP Online Planning among Dynamic Agents via Adaptive Conformal Prediction

arXiv.org Artificial Intelligence

Online planning for partially observable Markov decision processes (POMDPs) provides efficient techniques for robot decision-making under uncertainty. However, existing methods fall short of preventing safety violations in dynamic environments. This work presents a novel safe POMDP online planning approach that offers probabilistic safety guarantees amidst environments populated by multiple dynamic agents. Our approach utilizes data-driven trajectory prediction models of dynamic agents and applies Adaptive Conformal Prediction (ACP) for assessing the uncertainties in these predictions. Leveraging the obtained ACP-based trajectory predictions, our approach constructs safety shields on-the-fly to prevent unsafe actions within POMDP online planning. Through experimental evaluation in various dynamic environments using real-world pedestrian trajectory data, the proposed approach has been shown to effectively maintain probabilistic safety guarantees while accommodating up to hundreds of dynamic agents.


Trust-Aware Motion Planning for Human-Robot Collaboration under Distribution Temporal Logic Specifications

arXiv.org Artificial Intelligence

Recent work has considered trust-aware decision making for human-robot collaboration (HRC) with a focus on model learning. In this paper, we are interested in enabling the HRC system to complete complex tasks specified using temporal logic that involve human trust. Since human trust in robots is not observable, we adopt the widely used partially observable Markov decision process (POMDP) framework for modelling the interactions between humans and robots. To specify the desired behaviour, we propose to use syntactically co-safe linear distribution temporal logic (scLDTL), a logic that is defined over predicates of states as well as belief states of partially observable systems. The incorporation of belief predicates in scLDTL enhances its expressiveness while simultaneously introducing added complexity. This also presents a new challenge as the belief predicates must be evaluated over the continuous (infinite) belief space. To address this challenge, we present an algorithm for solving the optimal policy synthesis problem. First, we enhance the belief MDP (derived by reformulating the POMDP) with a probabilistic labelling function. Then a product belief MDP is constructed between the probabilistically labelled belief MDP and the automaton translation of the scLDTL formula. Finally, we show that the optimal policy can be obtained by leveraging existing point-based value iteration algorithms with essential modifications. Human subject experiments with 21 participants on a driving simulator demonstrate the effectiveness of the proposed approach.


Safe POMDP Online Planning via Shielding

arXiv.org Artificial Intelligence

Partially observable Markov decision processes (POMDPs) have been widely used in many robotic applications for sequential decision-making under uncertainty. POMDP online planning algorithms such as Partially Observable Monte-Carlo Planning (POMCP) can solve very large POMDPs with the goal of maximizing the expected return. But the resulting policies cannot provide safety guarantees that are imperative for real-world safety-critical tasks (e.g., autonomous driving). In this work, we consider safety requirements represented as almost-sure reach-avoid specifications (i.e., the probability to reach a set of goal states is one and the probability to reach a set of unsafe states is zero). We compute shields that restrict unsafe actions violating almost-sure reach-avoid specifications. We then integrate these shields into the POMCP algorithm for safe POMDP online planning. We propose four distinct shielding methods, differing in how the shields are computed and integrated, including factored variants designed to improve scalability. Experimental results on a set of benchmark domains demonstrate that the proposed shielding methods successfully guarantee safety (unlike the baseline POMCP without shielding) on large POMDPs, with negligible impact on the runtime for online planning.