Goto

Collaborating Authors

 Shen, Zhiqiang


Empowering Graph Invariance Learning with Deep Spurious Infomax

arXiv.org Artificial Intelligence

Recently, there has been a surge of interest in developing graph neural networks that utilize the invariance principle on graphs to generalize the out-of-distribution (OOD) data. Due to the limited knowledge about OOD data, existing approaches often pose assumptions about the correlation strengths of the underlying spurious features and the target labels. However, this prior is often unavailable and will change arbitrarily in the real-world scenarios, which may lead to severe failures of the existing graph invariance learning methods. To bridge this gap, we introduce a novel graph invariance learning paradigm, which induces a robust and general inductive bias. The paradigm is built upon the observation that the infomax principle encourages learning spurious features regardless of spurious correlation strengths. We further propose the EQuAD framework that realizes this learning paradigm and employs tailored learning objectives that provably elicit invariant features by disentangling them from the spurious features learned through infomax. Notably, EQuAD shows stable and enhanced performance across different degrees of bias in synthetic datasets and challenging real-world datasets up to $31.76\%$. Our code is available at \url{https://github.com/tianyao-aka/EQuAD}.


FBI-LLM: Scaling Up Fully Binarized LLMs from Scratch via Autoregressive Distillation

arXiv.org Artificial Intelligence

This work presents a Fully BInarized Large Language Model (FBI-LLM), demonstrating for the first time how to train a large-scale binary language model from scratch (not the partial binary or ternary LLM like BitNet b1.58) to match the performance of its full-precision counterparts (e.g., FP16 or BF16) in transformer-based LLMs. It achieves this by employing an autoregressive distillation (AD) loss with maintaining equivalent model dimensions (130M, 1.3B, 7B) and training data volume as regular LLM pretraining, while delivering competitive results in terms of perplexity and task-specific effectiveness. Intriguingly, by analyzing the training trajectory, we find that the pretrained weight is not necessary for training binarized LLMs from scratch. This research encourages a new computational framework and may facilitate the future design of specialized hardware tailored for fully 1-bit LLMs. We make all models, code, and training dataset fully accessible and transparent to support further research (Code: https://github.com/LiqunMa/FBI-LLM. Model: https://huggingface.co/LiqunMa/).


Web2Code: A Large-scale Webpage-to-Code Dataset and Evaluation Framework for Multimodal LLMs

arXiv.org Artificial Intelligence

Multimodal large language models (MLLMs) have shown impressive success across modalities such as image, video, and audio in a variety of understanding and generation tasks. However, current MLLMs are surprisingly poor at understanding webpage screenshots and generating their corresponding HTML code. To address this problem, we propose Web2Code, a benchmark consisting of a new large-scale webpage-to-code dataset for instruction tuning and an evaluation framework for the webpage understanding and HTML code translation abilities of MLLMs. For dataset construction, we leverage pretrained LLMs to enhance existing webpage-to-code datasets as well as generate a diverse pool of new webpages rendered into images. Specifically, the inputs are webpage images and instructions, while the responses are the webpage's HTML code. We further include diverse natural language QA pairs about the webpage content in the responses to enable a more comprehensive understanding of the web content. To evaluate model performance in these tasks, we develop an evaluation framework for testing MLLMs' abilities in webpage understanding and web-to-code generation. Extensive experiments show that our proposed dataset is beneficial not only to our proposed tasks but also in the general visual domain, while previous datasets result in worse performance. We hope our work will contribute to the development of general MLLMs suitable for web-based content generation and task automation. Our data and code will be available at https://github.com/MBZUAI-LLM/web2code.


Open-LLM-Leaderboard: From Multi-choice to Open-style Questions for LLMs Evaluation, Benchmark, and Arena

arXiv.org Artificial Intelligence

Multiple-choice questions (MCQ) are frequently used to assess large language models (LLMs). Typically, an LLM is given a question and selects the answer deemed most probable after adjustments for factors like length. Unfortunately, LLMs may inherently favor certain answer choice IDs, such as A/B/C/D, due to inherent biases of priori unbalanced probabilities, influencing the prediction of answers based on these IDs. Previous research has introduced methods to reduce this ''selection bias'' by simply permutating options on a few test samples and applying to new ones. Another problem of MCQ is the lottery ticket choice by ''random guessing''. The LLM does not learn particular knowledge, but the option is guessed correctly. This situation is especially serious for those small-scale LLMs. To address them, a more thorough approach involves shifting from MCQ to open-style questions, which can fundamentally eliminate selection bias and random guessing issues. However, transitioning causes its own set of challenges in (1) identifying suitable open-style questions and (2) validating the correctness of LLM open-style responses against human-annotated ground-truths. This work aims to tackle these significant difficulties, and establish a new LLM evaluation benchmark through entirely open-style questions. Consequently, we introduce the Open-LLM-Leaderboard to track various LLMs' performance and reflect true capability of them, such as GPT-4o/4/3.5, Claude 3, Gemini, etc. Our code and dataset are available at https://github.com/VILA-Lab/Open-LLM-Leaderboard.


Efficient LLM Jailbreak via Adaptive Dense-to-sparse Constrained Optimization

arXiv.org Artificial Intelligence

Recent advancements have allowed large language models (LLMs) to be employed across various sectors, such as content generation [15], programming support [13], and healthcare [7]. Nevertheless, LLMs can pose risks by possibly generating malicious content, including writing malware, guidance for making dangerous items, and leaking private information from their training data [18, 10]. As LLMs become more powerful and widely used, it becomes increasingly important to manage the risks associated with their misuse. In this context, the concept of red-teaming LLMs is introduced to test the reliability of their safety features [2, 17]. Consequently, the LLM jailbreak attack was developed to support the red-teaming process: by combining the jailbreak prompt with malicious questions (e.g., how to make explosives), it can mislead the aligned LLMs to circumvent the safety features and potentially produce responses that are harmful, discriminatory, violent, or sensitive. Recently, a number of automatic jailbreak attacks have been introduced. Generally, these can be categorized into two types: prompt-level jailbreaks [8, 11, 3] and token-level jailbreaks [18, 6, 9]. Prompt-level jailbreaks employ semantically meaningful deception to compromise LLMs.


Elucidating the Design Space of Dataset Condensation

arXiv.org Artificial Intelligence

Dataset condensation, a concept within data-centric learning, efficiently transfers critical attributes from an original dataset to a synthetic version, maintaining both diversity and realism. This approach significantly improves model training efficiency and is adaptable across multiple application areas. Previous methods in dataset condensation have faced challenges: some incur high computational costs which limit scalability to larger datasets (e.g., MTT, DREAM, and TESLA), while others are restricted to less optimal design spaces, which could hinder potential improvements, especially in smaller datasets (e.g., SRe2L, G-VBSM, and RDED). To address these limitations, we propose a comprehensive design framework that includes specific, effective strategies like implementing soft category-aware matching and adjusting the learning rate schedule. These strategies are grounded in empirical evidence and theoretical backing. Our resulting approach, Elucidate Dataset Condensation (EDC), establishes a benchmark for both small and large-scale dataset condensation. In our testing, EDC achieves state-of-the-art accuracy, reaching 48.6% on ImageNet-1k with a ResNet-18 model at an IPC of 10, which corresponds to a compression ratio of 0.78%. This performance exceeds those of SRe2L, G-VBSM, and RDED by margins of 27.3%, 17.2%, and 6.6%, respectively.


TransLinkGuard: Safeguarding Transformer Models Against Model Stealing in Edge Deployment

arXiv.org Artificial Intelligence

Proprietary large language models (LLMs) have been widely applied in various scenarios. Additionally, deploying LLMs on edge devices is trending for efficiency and privacy reasons. However, edge deployment of proprietary LLMs introduces new security challenges: edge-deployed models are exposed as white-box accessible to users, enabling adversaries to conduct effective model stealing (MS) attacks. Unfortunately, existing defense mechanisms fail to provide effective protection. Specifically, we identify four critical protection properties that existing methods fail to simultaneously satisfy: (1) maintaining protection after a model is physically copied; (2) authorizing model access at request level; (3) safeguarding runtime reverse engineering; (4) achieving high security with negligible runtime overhead. To address the above issues, we propose TransLinkGuard, a plug-and-play model protection approach against model stealing on edge devices. The core part of TransLinkGuard is a lightweight authorization module residing in a secure environment, e.g., TEE. The authorization module can freshly authorize each request based on its input. Extensive experiments show that TransLinkGuard achieves the same security protection as the black-box security guarantees with negligible overhead.


Self-supervised Dataset Distillation: A Good Compression Is All You Need

arXiv.org Artificial Intelligence

Dataset distillation aims to compress information from a large-scale original dataset to a new compact dataset while striving to preserve the utmost degree of the original data informational essence. Previous studies have predominantly concentrated on aligning the intermediate statistics between the original and distilled data, such as weight trajectory, features, gradient, BatchNorm, etc. In this work, we consider addressing this task through the new lens of model informativeness in the compression stage on the original dataset pretraining. We observe that with the prior state-of-the-art SRe$^2$L, as model sizes increase, it becomes increasingly challenging for supervised pretrained models to recover learned information during data synthesis, as the channel-wise mean and variance inside the model are flatting and less informative. We further notice that larger variances in BN statistics from self-supervised models enable larger loss signals to update the recovered data by gradients, enjoying more informativeness during synthesis. Building on this observation, we introduce SC-DD, a simple yet effective Self-supervised Compression framework for Dataset Distillation that facilitates diverse information compression and recovery compared to traditional supervised learning schemes, further reaps the potential of large pretrained models with enhanced capabilities. Extensive experiments are conducted on CIFAR-100, Tiny-ImageNet and ImageNet-1K datasets to demonstrate the superiority of our proposed approach. The proposed SC-DD outperforms all previous state-of-the-art supervised dataset distillation methods when employing larger models, such as SRe$^2$L, MTT, TESLA, DC, CAFE, etc., by large margins under the same recovery and post-training budgets. Code is available at https://github.com/VILA-Lab/SRe2L/tree/main/SCDD/.


Cross-Cluster Shifting for Efficient and Effective 3D Object Detection in Autonomous Driving

arXiv.org Artificial Intelligence

We present a new 3D point-based detector model, named Shift-SSD, for precise 3D object detection in autonomous driving. Traditional point-based 3D object detectors often employ architectures that rely on a progressive downsampling of points. While this method effectively reduces computational demands and increases receptive fields, it will compromise the preservation of crucial non-local information for accurate 3D object detection, especially in the complex driving scenarios. To address this, we introduce an intriguing Cross-Cluster Shifting operation to unleash the representation capacity of the point-based detector by efficiently modeling longer-range inter-dependency while including only a negligible overhead. Concretely, the Cross-Cluster Shifting operation enhances the conventional design by shifting partial channels from neighboring clusters, which enables richer interaction with non-local regions and thus enlarges the receptive field of clusters. We conduct extensive experiments on the KITTI, Waymo, and nuScenes datasets, and the results demonstrate the state-of-the-art performance of Shift-SSD in both detection accuracy and runtime efficiency.


Principled Instructions Are All You Need for Questioning LLaMA-1/2, GPT-3.5/4

arXiv.org Artificial Intelligence

This paper introduces 26 guiding principles designed to streamline the process of querying and prompting large language models. Our goal is to simplify the underlying concepts of formulating questions for various scales of large language models, examining their abilities, and enhancing user comprehension on the behaviors of different scales of large language models when feeding into different prompts. Extensive experiments are conducted on LLaMA-1/2 (7B, 13B and 70B), GPT-3.5/4 to verify the effectiveness of the proposed principles on instructions and prompts design. We hope that this work can provide a better guide for researchers working on the prompting of large language models. Project page is available at https://github.com/VILA-Lab/ATLAS.