Goto

Collaborating Authors

 Shen, Yan


AdaManip: Adaptive Articulated Object Manipulation Environments and Policy Learning

arXiv.org Artificial Intelligence

Articulated object manipulation is a critical capability for robots to perform various tasks in real-world scenarios. Composed of multiple parts connected by joints, articulated objects are endowed with diverse functional mechanisms through complex relative motions. For example, a safe consists of a door, a handle, and a lock, where the door can only be opened when the latch is unlocked. The internal structure, such as the state of a lock or joint angle constraints, cannot be directly observed from visual observation. Consequently, successful manipulation of these objects requires adaptive adjustment based on trial and error rather than a one-time visual inference. However, previous datasets and simulation environments for articulated objects have primarily focused on simple manipulation mechanisms where the complete manipulation process can be inferred from the object's appearance. To enhance the diversity and complexity of adaptive manipulation mechanisms, we build a novel articulated object manipulation environment and equip it with 9 categories of objects. Based on the environment and objects, we further propose an adaptive demonstration collection and 3D visual diffusion-based imitation learning pipeline that learns the adaptive manipulation policy. The effectiveness of our designs and proposed method is validated through both simulation and real-world experiments. Our project page is available at: https://adamanip.github.io


GarmentLab: A Unified Simulation and Benchmark for Garment Manipulation

arXiv.org Artificial Intelligence

Manipulating garments and fabrics has long been a critical endeavor in the development of home-assistant robots. However, due to complex dynamics and topological structures, garment manipulations pose significant challenges. Recent successes in reinforcement learning and vision-based methods offer promising avenues for learning garment manipulation. Nevertheless, these approaches are severely constrained by current benchmarks, which offer limited diversity of tasks and unrealistic simulation behavior. Therefore, we present GarmentLab, a content-rich benchmark and realistic simulation designed for deformable object and garment manipulation. Our benchmark encompasses a diverse range of garment types, robotic systems and manipulators. The abundant tasks in the benchmark further explores of the interactions between garments, deformable objects, rigid bodies, fluids, and human body. Moreover, by incorporating multiple simulation methods such as FEM and PBD, along with our proposed sim-to-real algorithms and real-world benchmark, we aim to significantly narrow the sim-to-real gap. We evaluate state-of-the-art vision methods, reinforcement learning, and imitation learning approaches on these tasks, highlighting the challenges faced by current algorithms, notably their limited generalization capabilities. Our proposed open-source environments and comprehensive analysis show promising boost to future research in garment manipulation by unlocking the full potential of these methods. We guarantee that we will open-source our code as soon as possible. You can watch the videos in supplementary files to learn more about the details of our work. Our project page is available at: https://garmentlab.github.io/


NaturalVLM: Leveraging Fine-grained Natural Language for Affordance-Guided Visual Manipulation

arXiv.org Artificial Intelligence

Enabling home-assistant robots to perceive and manipulate a diverse range of 3D objects based on human language instructions is a pivotal challenge. Prior research has predominantly focused on simplistic and task-oriented instructions, i.e., "Slide the top drawer open". However, many real-world tasks demand intricate multi-step reasoning, and without human instructions, these will become extremely difficult for robot manipulation. To address these challenges, we introduce a comprehensive benchmark, NrVLM, comprising 15 distinct manipulation tasks, containing over 4500 episodes meticulously annotated with fine-grained language instructions. We split the long-term task process into several steps, with each step having a natural language instruction. Moreover, we propose a novel learning framework that completes the manipulation task step-by-step according to the fine-grained instructions. Specifically, we first identify the instruction to execute, taking into account visual observations and the end-effector's current state. Subsequently, our approach facilitates explicit learning through action-prompts and perception-prompts to promote manipulation-aware cross-modality alignment. Leveraging both visual observations and linguistic guidance, our model outputs a sequence of actionable predictions for manipulation, including contact points and end-effector poses. We evaluate our method and baselines using the proposed benchmark NrVLM. The experimental results demonstrate the effectiveness of our approach. For additional details, please refer to https://sites.google.com/view/naturalvlm.


Continual Domain Adversarial Adaptation via Double-Head Discriminators

arXiv.org Artificial Intelligence

Domain adversarial adaptation in a continual setting poses a significant challenge due to the limitations on accessing previous source domain data. Despite extensive research in continual learning, the task of adversarial adaptation cannot be effectively accomplished using only a small number of stored source domain data, which is a standard setting in memory replay approaches. This limitation arises from the erroneous empirical estimation of $\gH$-divergence with few source domain samples. To tackle this problem, we propose a double-head discriminator algorithm, by introducing an addition source-only domain discriminator that are trained solely on source learning phase. We prove that with the introduction of a pre-trained source-only domain discriminator, the empirical estimation error of $\gH$-divergence related adversarial loss is reduced from the source domain side. Further experiments on existing domain adaptation benchmark show that our proposed algorithm achieves more than 2$\%$ improvement on all categories of target domain adaptation task while significantly mitigating the forgetting on source domain.


ManipLLM: Embodied Multimodal Large Language Model for Object-Centric Robotic Manipulation

arXiv.org Artificial Intelligence

Robot manipulation relies on accurately predicting contact points and end-effector directions to ensure successful operation. However, learning-based robot manipulation, trained on a limited category within a simulator, often struggles to achieve generalizability, especially when confronted with extensive categories. Therefore, we introduce an innovative approach for robot manipulation that leverages the robust reasoning capabilities of Multimodal Large Language Models (MLLMs) to enhance the stability and generalization of manipulation. By fine-tuning the injected adapters, we preserve the inherent common sense and reasoning ability of the MLLMs while equipping them with the ability for manipulation. The fundamental insight lies in the introduced fine-tuning paradigm, encompassing object category understanding, affordance prior reasoning, and object-centric pose prediction to stimulate the reasoning ability of MLLM in manipulation. During inference, our approach utilizes an RGB image and text prompt to predict the end effector's pose in chain of thoughts. After the initial contact is established, an active impedance adaptation policy is introduced to plan the upcoming waypoints in a closed-loop manner. Moreover, in real world, we design a test-time adaptation (TTA) strategy for manipulation to enable the model better adapt to the current real-world scene configuration. Experiments in simulator and real-world show the promising performance of ManipLLM. More details and demonstrations can be found at https://sites.google.com/view/manipllm.


Learning Environment-Aware Affordance for 3D Articulated Object Manipulation under Occlusions

arXiv.org Artificial Intelligence

Perceiving and manipulating 3D articulated objects in diverse environments is essential for home-assistant robots. Recent studies have shown that point-level affordance provides actionable priors for downstream manipulation tasks. However, existing works primarily focus on single-object scenarios with homogeneous agents, overlooking the realistic constraints imposed by the environment and the agent's morphology, e.g., occlusions and physical limitations. In this paper, we propose an environment-aware affordance framework that incorporates both object-level actionable priors and environment constraints. Unlike object-centric affordance approaches, learning environment-aware affordance faces the challenge of combinatorial explosion due to the complexity of various occlusions, characterized by their quantities, geometries, positions and poses. To address this and enhance data efficiency, we introduce a novel contrastive affordance learning framework capable of training on scenes containing a single occluder and generalizing to scenes with complex occluder combinations. Experiments demonstrate the effectiveness of our proposed approach in learning affordance considering environment constraints.


LightSAGE: Graph Neural Networks for Large Scale Item Retrieval in Shopee's Advertisement Recommendation

arXiv.org Artificial Intelligence

Graph Neural Network (GNN) is the trending solution for item retrieval in recommendation problems. Most recent reports, however, focus heavily on new model architectures. This may bring some gaps when applying GNN in the industrial setup, where, besides the model, constructing the graph and handling data sparsity also play critical roles in the overall success of the project. In this work, we report how GNN is applied for large-scale e-commerce item retrieval at Shopee. We introduce our simple yet novel and impactful techniques in graph construction, modeling, and handling data skewness. Specifically, we construct high-quality item graphs by combining strong-signal user behaviors with high-precision collaborative filtering (CF) algorithm. We then develop a new GNN architecture named LightSAGE to produce high-quality items' embeddings for vector search. Finally, we design multiple strategies to handle cold-start and long-tail items, which are critical in an advertisement (ads) system. Our models bring improvement in offline evaluations, online A/B tests, and are deployed to the main traffic of Shopee's Recommendation Advertisement system.


ImageManip: Image-based Robotic Manipulation with Affordance-guided Next View Selection

arXiv.org Artificial Intelligence

In the realm of future home-assistant robots, 3D articulated object manipulation is essential for enabling robots to interact with their environment. Many existing studies make use of 3D point clouds as the primary input for manipulation policies. However, this approach encounters challenges due to data sparsity and the significant cost associated with acquiring point cloud data, which can limit its practicality. In contrast, RGB images offer high-resolution observations using cost effective devices but lack spatial 3D geometric information. To overcome these limitations, we present a novel image-based robotic manipulation framework. This framework is designed to capture multiple perspectives of the target object and infer depth information to complement its geometry. Initially, the system employs an eye-on-hand RGB camera to capture an overall view of the target object. It predicts the initial depth map and a coarse affordance map. The affordance map indicates actionable areas on the object and serves as a constraint for selecting subsequent viewpoints. Based on the global visual prior, we adaptively identify the optimal next viewpoint for a detailed observation of the potential manipulation success area. We leverage geometric consistency to fuse the views, resulting in a refined depth map and a more precise affordance map for robot manipulation decisions. By comparing with prior works that adopt point clouds or RGB images as inputs, we demonstrate the effectiveness and practicality of our method. In the project webpage (https://sites.google.com/view/imagemanip), real world experiments further highlight the potential of our method for practical deployment.


Scribble-based Hierarchical Weakly Supervised Learning for Brain Tumor Segmentation

arXiv.org Machine Learning

The recent state-of-the-art deep learning methods have significantly improved brain tumor segmentation. However, fully supervised training requires a large amount of manually labeled masks, which is highly time-consuming and needs domain expertise. Weakly supervised learning with scribbles provides a good trade-off between model accuracy and the effort of manual labeling. However, for segmenting the hierarchical brain tumor structures, manually labeling scribbles for each substructure could still be demanding. In this paper, we use only two kinds of weak labels, i.e., scribbles on whole tumor and healthy brain tissue, and global labels for the presence of each substructure, to train a deep learning model to segment all the sub-regions. Specifically, we train two networks in two phases: first, we only use whole tumor scribbles to train a whole tumor (WT) segmentation network, which roughly recovers the WT mask of training data; then we cluster the WT region with the guide of global labels. The rough substructure segmentation from clustering is used as weak labels to train the second network. The dense CRF loss is used to refine the weakly supervised segmentation. We evaluate our approach on the BraTS2017 dataset and achieve competitive WT dice score as well as comparable scores on substructure segmentation compared to an upper bound when trained with fully annotated masks.