Shen, Weiming
An Early Fault Detection Method of Rotating Machines Based on Multiple Feature Fusion with Stacking Architecture
Song, Wenbin, Wu, Di, Shen, Weiming, Boulet, Benoit
Early fault detection (EFD) of rotating machines is important to decrease the maintenance cost and improve the mechanical system stability. One of the key points of EFD is developing a generic model to extract robust and discriminative features from different equipment for early fault detection. Most existing EFD methods focus on learning fault representation by one type of feature. However, a combination of multiple features can capture a more comprehensive representation of system state. In this paper, we propose an EFD method based on multiple feature fusion with stacking architecture (M2FSA). The proposed method can extract generic and discriminiative features to detect early faults by combining time domain (TD), frequency domain (FD), and time-frequency domain (TFD) features. In order to unify the dimensions of the different domain features, Stacked Denoising Autoencoder (SDAE) is utilized to learn deep features in three domains. The architecture of the proposed M2FSA consists of two layers. The first layer contains three base models, whose corresponding inputs are different deep features. The outputs of the first layer are concatenated to generate the input to the second layer, which consists of a meta model. The proposed method is tested on three bearing datasets. The results demonstrate that the proposed method is better than existing methods both in sensibility and reliability.
SCCAM: Supervised Contrastive Convolutional Attention Mechanism for Ante-hoc Interpretable Fault Diagnosis with Limited Fault Samples
Li, Mengxuan, Peng, Peng, Zhang, Jingxin, Wang, Hongwei, Shen, Weiming
In real industrial processes, fault diagnosis methods are required to learn from limited fault samples since the procedures are mainly under normal conditions and the faults rarely occur. Although attention mechanisms have become popular in the field of fault diagnosis, the existing attention-based methods are still unsatisfying for the above practical applications. First, pure attention-based architectures like transformers need a large number of fault samples to offset the lack of inductive biases thus performing poorly under limited fault samples. Moreover, the poor fault classification dilemma further leads to the failure of the existing attention-based methods to identify the root causes. To address the aforementioned issues, we innovatively propose a supervised contrastive convolutional attention mechanism (SCCAM) with ante-hoc interpretability, which solves the root cause analysis problem under limited fault samples for the first time. The proposed SCCAM method is tested on a continuous stirred tank heater and the Tennessee Eastman industrial process benchmark. Three common fault diagnosis scenarios are covered, including a balanced scenario for additional verification and two scenarios with limited fault samples (i.e., imbalanced scenario and long-tail scenario). The comprehensive results demonstrate that the proposed SCCAM method can achieve better performance compared with the state-of-the-art methods on fault classification and root cause analysis.
Collaborative Discrepancy Optimization for Reliable Image Anomaly Localization
Cao, Yunkang, Xu, Xiaohao, Liu, Zhaoge, Shen, Weiming
Most unsupervised image anomaly localization methods suffer from overgeneralization because of the high generalization abilities of convolutional neural networks, leading to unreliable predictions. To mitigate the overgeneralization, this study proposes to collaboratively optimize normal and abnormal feature distributions with the assistance of synthetic anomalies, namely collaborative discrepancy optimization (CDO). CDO introduces a margin optimization module and an overlap optimization module to optimize the two key factors determining the localization performance, i.e., the margin and the overlap between the discrepancy distributions (DDs) of normal and abnormal samples. With CDO, a large margin and a small overlap between normal and abnormal DDs are obtained, and the prediction reliability is boosted. Experiments on MVTec2D and MVTec3D show that CDO effectively mitigates the overgeneralization and achieves great anomaly localization performance with real-time computation efficiency. A real-world automotive plastic parts inspection application further demonstrates the capability of the proposed CDO. Code is available on https://github.com/caoyunkang/CDO.
SCLIFD:Supervised Contrastive Knowledge Distillation for Incremental Fault Diagnosis under Limited Fault Data
Peng, Peng, Zhang, Hanrong, Li, Mengxuan, Peng, Gongzhuang, Wang, Hongwei, Shen, Weiming
Intelligent fault diagnosis has made extraordinary advancements currently. Nonetheless, few works tackle class-incremental learning for fault diagnosis under limited fault data, i.e., imbalanced and long-tailed fault diagnosis, which brings about various notable challenges. Initially, it is difficult to extract discriminative features from limited fault data. Moreover, a well-trained model must be retrained from scratch to classify the samples from new classes, thus causing a high computational burden and time consumption. Furthermore, the model may suffer from catastrophic forgetting when trained incrementally. Finally, the model decision is biased toward the new classes due to the class imbalance. The problems can consequently lead to performance degradation of fault diagnosis models. Accordingly, we introduce a supervised contrastive knowledge distillation for incremental fault diagnosis under limited fault data (SCLIFD) framework to address these issues, which extends the classical incremental classifier and representation learning (iCaRL) framework from three perspectives. Primarily, we adopt supervised contrastive knowledge distillation (KD) to enhance its representation learning capability under limited fault data. Moreover, we propose a novel prioritized exemplar selection method adaptive herding (AdaHerding) to restrict the increase of the computational burden, which is also combined with KD to alleviate catastrophic forgetting. Additionally, we adopt the cosine classifier to mitigate the adverse impact of class imbalance. We conduct extensive experiments on simulated and real-world industrial processes under different imbalance ratios. Experimental results show that our SCLIFD outperforms the existing methods by a large margin.
FastATDC: Fast Anomalous Trajectory Detection and Classification
Ni, Tianle, Wang, Jingwei, Ma, Yunlong, Wang, Shuang, Liu, Min, Shen, Weiming
Automated detection of anomalous trajectories is an important problem with considerable applications in intelligent transportation systems. Many existing studies have focused on distinguishing anomalous trajectories from normal trajectories, ignoring the large differences between anomalous trajectories. A recent study has made great progress in identifying abnormal trajectory patterns and proposed a two-stage algorithm for anomalous trajectory detection and classification (ATDC). This algorithm has excellent performance but suffers from a few limitations, such as high time complexity and poor interpretation. Here, we present a careful theoretical and empirical analysis of the ATDC algorithm, showing that the calculation of anomaly scores in both stages can be simplified, and that the second stage of the algorithm is much more important than the first stage. Hence, we develop a FastATDC algorithm that introduces a random sampling strategy in both stages. Experimental results show that FastATDC is 10 to 20 times faster than ATDC on real datasets. Moreover, FastATDC outperforms the baseline algorithms and is comparable to the ATDC algorithm.