Goto

Collaborating Authors

 Shen, Tiancheng


Optimizing Singular Spectrum for Large Language Model Compression

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated remarkable capabilities, yet prohibitive parameter complexity often hinders their deployment. Existing singular value decomposition (SVD) based compression methods simply deem singular values as importance scores of decomposed components. However, this importance ordered by singular values does not necessarily correlate with the performance of a downstream task. In this work, we introduce SoCo (Singular spectrum optimization for large language model Compression), a novel compression framework that learns to rescale the decomposed components of SVD in a data-driven manner. Concretely, we employ a learnable diagonal matrix to assign importance scores for singular spectrum and develop a three-stage training process that progressively refines these scores from initial coarse compression to fine-grained sparsification-thereby striking an effective balance between aggressive model compression and performance preservation. Thanks to the learnable singular spectrum, SoCo adaptively prunes components according to the sparsified importance scores, rather than relying on the fixed order of singular values. More importantly, the remaining components with amplified importance scores can compensate for the loss of the pruned ones. Experimental evaluations across multiple LLMs and benchmarks demonstrate that SoCo surpasses the state-of-the-art methods in model compression.


Generalizable Entity Grounding via Assistance of Large Language Model

arXiv.org Artificial Intelligence

In this work, we propose a novel approach to densely ground visual entities from a long caption. We leverage a large multimodal model (LMM) to extract semantic nouns, a class-agnostic segmentation model to generate entity-level segmentation, and the proposed multi-modal feature fusion module to associate each semantic noun with its corresponding segmentation mask. Additionally, we introduce a strategy of encoding entity segmentation masks into a colormap, enabling the preservation of fine-grained predictions from features of high-resolution masks. This approach allows us to extract visual features from low-resolution images using the CLIP vision encoder in the LMM, which is more computationally efficient than existing approaches that use an additional encoder for high-resolution images. Our comprehensive experiments demonstrate the superiority of our method, outperforming state-of-the-art techniques on three tasks, including panoptic narrative grounding, referring expression segmentation, and panoptic segmentation.


High Quality Segmentation for Ultra High-resolution Images

arXiv.org Artificial Intelligence

To segment 4K or 6K ultra high-resolution images needs extra computation consideration in image segmentation. Common strategies, such as down-sampling, patch cropping, and cascade model, cannot address well the balance issue between accuracy and computation cost. Motivated by the fact that humans distinguish among objects continuously from coarse to precise levels, we propose the Continuous Refinement Model~(CRM) for the ultra high-resolution segmentation refinement task. CRM continuously aligns the feature map with the refinement target and aggregates features to reconstruct these images' details. Besides, our CRM shows its significant generalization ability to fill the resolution gap between low-resolution training images and ultra high-resolution testing ones. We present quantitative performance evaluation and visualization to show that our proposed method is fast and effective on image segmentation refinement. Code will be released at https://github.com/dvlab-research/Entity.


Joint Sub-bands Learning with Clique Structures for Wavelet Domain Super-Resolution

Neural Information Processing Systems

Convolutional neural networks (CNNs) have recently achieved great success in single-image super-resolution (SISR). However, these methods tend to produce over-smoothed outputs and miss some textural details. To solve these problems, we propose the Super-Resolution CliqueNet (SRCliqueNet) to reconstruct the high resolution (HR) image with better textural details in the wavelet domain. The proposed SRCliqueNet firstly extracts a set of feature maps from the low resolution (LR) image by the clique blocks group. Then we send the set of feature maps to the clique up-sampling module to reconstruct the HR image. The clique up-sampling module consists of four sub-nets which predict the high resolution wavelet coefficients of four sub-bands. Since we consider the edge feature properties of four sub-bands, the four sub-nets are connected to the others so that they can learn the coefficients of four sub-bands jointly. Finally we apply inverse discrete wavelet transform (IDWT) to the output of four sub-nets at the end of the clique up-sampling module to increase the resolution and reconstruct the HR image. Extensive quantitative and qualitative experiments on benchmark datasets show that our method achieves superior performance over the state-of-the-art methods.


Joint Sub-bands Learning with Clique Structures for Wavelet Domain Super-Resolution

Neural Information Processing Systems

Convolutional neural networks (CNNs) have recently achieved great success in single-image super-resolution (SISR). However, these methods tend to produce over-smoothed outputs and miss some textural details. To solve these problems, we propose the Super-Resolution CliqueNet (SRCliqueNet) to reconstruct the high resolution (HR) image with better textural details in the wavelet domain. The proposed SRCliqueNet firstly extracts a set of feature maps from the low resolution (LR) image by the clique blocks group. Then we send the set of feature maps to the clique up-sampling module to reconstruct the HR image. The clique up-sampling module consists of four sub-nets which predict the high resolution wavelet coefficients of four sub-bands. Since we consider the edge feature properties of four sub-bands, the four sub-nets are connected to the others so that they can learn the coefficients of four sub-bands jointly. Finally we apply inverse discrete wavelet transform (IDWT) to the output of four sub-nets at the end of the clique up-sampling module to increase the resolution and reconstruct the HR image. Extensive quantitative and qualitative experiments on benchmark datasets show that our method achieves superior performance over the state-of-the-art methods.