Goto

Collaborating Authors

 Shen, Li


MentalChat16K: A Benchmark Dataset for Conversational Mental Health Assistance

arXiv.org Artificial Intelligence

We introduce MentalChat16K, an English benchmark dataset combining a synthetic mental health counseling dataset and a dataset of anonymized transcripts from interventions between Behavioral Health Coaches and Caregivers of patients in palliative or hospice care. Covering a diverse range of conditions like depression, anxiety, and grief, this curated dataset is designed to facilitate the development and evaluation of large language models for conversational mental health assistance. By providing a high-quality resource tailored to this critical domain, MentalChat16K aims to advance research on empathetic, personalized AI solutions to improve access to mental health support services. The dataset prioritizes patient privacy, ethical considerations, and responsible data usage. MentalChat16K presents a valuable opportunity for the research community to innovate AI technologies that can positively impact mental well-being.


Retrieval-Augmented Perception: High-Resolution Image Perception Meets Visual RAG

arXiv.org Artificial Intelligence

High-resolution (HR) image perception remains a key challenge in multimodal large language models (MLLMs). To overcome the limitations of existing methods, this paper shifts away from prior dedicated heuristic approaches and revisits the most fundamental idea to HR perception by enhancing the long-context capability of MLLMs, driven by recent advances in long-context techniques like retrieval-augmented generation (RAG) for general LLMs. Towards this end, this paper presents the first study exploring the use of RAG to address HR perception challenges. Specifically, we propose Retrieval-Augmented Perception (RAP), a training-free framework that retrieves and fuses relevant image crops while preserving spatial context using the proposed Spatial-Awareness Layout. To accommodate different tasks, the proposed Retrieved-Exploration Search (RE-Search) dynamically selects the optimal number of crops based on model confidence and retrieval scores. Experimental results on HR benchmarks demonstrate the significant effectiveness of RAP, with LLaVA-v1.5-13B achieving a 43% improvement on $V^*$ Bench and 19% on HR-Bench.


On Theoretical Limits of Learning with Label Differential Privacy

arXiv.org Artificial Intelligence

Label differential privacy (DP) is designed for learning problems involving private labels and public features. While various methods have been proposed for learning under label DP, the theoretical limits remain largely unexplored. In this paper, we investigate the fundamental limits of learning with label DP in both local and central models for both classification and regression tasks, characterized by minimax convergence rates. We establish lower bounds by converting each task into a multiple hypothesis testing problem and bounding the test error. Additionally, we develop algorithms that yield matching upper bounds. Our results demonstrate that under label local DP (LDP), the risk has a significantly faster convergence rate than that under full LDP, i.e. protecting both features and labels, indicating the advantages of relaxing the DP definition to focus solely on labels. In contrast, under the label central DP (CDP), the risk is only reduced by a constant factor compared to full DP, indicating that the relaxation of CDP only has limited benefits on the performance.


Stable-SPAM: How to Train in 4-Bit More Stably than 16-Bit Adam

arXiv.org Artificial Intelligence

This paper comprehensively evaluates several recently proposed optimizers for 4-bit training, revealing that low-bit precision amplifies sensitivity to learning rates and often causes unstable gradient norms, leading to divergence at higher learning rates. Among these, SPAM, a recent optimizer featuring momentum reset and spike-aware gradient clipping, achieves the best performance across various bit levels, but struggles to stabilize gradient norms, requiring careful learning rate tuning. To address these limitations, we propose Stable-SPAM, which incorporates enhanced gradient normalization and clipping techniques. In particular, Stable-SPAM (1) adaptively updates the clipping threshold for spiked gradients by tracking their historical maxima; (2) normalizes the entire gradient matrix based on its historical $l_2$-norm statistics; and $(3)$ inherits momentum reset from SPAM to periodically reset the first and second moments of Adam, mitigating the accumulation of spiked gradients. Extensive experiments show that Stable-SPAM effectively stabilizes gradient norms in 4-bit LLM training, delivering superior performance compared to Adam and SPAM. Notably, our 4-bit LLaMA-1B model trained with Stable-SPAM outperforms the BF16 LLaMA-1B trained with Adam by up to $2$ perplexity. Furthermore, when both models are trained in 4-bit, Stable-SPAM achieves the same loss as Adam while requiring only about half the training steps. Code is available at https://github.com/TianjinYellow/StableSPAM.git.


A Survey on Mechanistic Interpretability for Multi-Modal Foundation Models

arXiv.org Artificial Intelligence

The rise of foundation models has transformed machine learning research, prompting efforts to uncover their inner workings and develop more efficient and reliable applications for better control. While significant progress has been made in interpreting Large Language Models (LLMs), multimodal foundation models (MMFMs) - such as contrastive vision-language models, generative vision-language models, and text-to-image models - pose unique interpretability challenges beyond unimodal frameworks. Despite initial studies, a substantial gap remains between the interpretability of LLMs and MMFMs. This survey explores two key aspects: (1) the adaptation of LLM interpretability methods to multimodal models and (2) understanding the mechanistic differences between unimodal language models and crossmodal systems. By systematically reviewing current MMFM analysis techniques, we propose a structured taxonomy of interpretability methods, compare insights across unimodal and multimodal architectures, and highlight critical research gaps.


Edit Once, Update Everywhere: A Simple Framework for Cross-Lingual Knowledge Synchronization in LLMs

arXiv.org Artificial Intelligence

Knowledge editing allows for efficient adaptation of large language models (LLMs) to new information or corrections without requiring full retraining. However, prior methods typically focus on either single-language editing or basic multilingual editing, failing to achieve true cross-linguistic knowledge synchronization. To address this, we present a simple and practical state-of-the-art (SOTA) recipe Cross-Lingual Knowledge Democracy Edit (X-KDE), designed to propagate knowledge from a dominant language to other languages effectively. Our X-KDE comprises two stages: (i) Cross-lingual Edition Instruction Tuning (XE-IT), which fine-tunes the model on a curated parallel dataset to modify in-scope knowledge while preserving unrelated information, and (ii) Target-language Preference Optimization (TL-PO), which applies advanced optimization techniques to ensure consistency across languages, fostering the transfer of updates. Additionally, we contribute a high-quality, cross-lingual dataset, specifically designed to enhance knowledge transfer across languages. Extensive experiments on the Bi-ZsRE and MzsRE benchmarks show that X-KDE significantly enhances cross-lingual performance, achieving an average improvement of +8.19%, while maintaining high accuracy in monolingual settings.


PEARL: Towards Permutation-Resilient LLMs

arXiv.org Artificial Intelligence

The in-context learning (ICL) capability of large language models (LLMs) enables them to perform challenging tasks using provided demonstrations. However, ICL is highly sensitive to the ordering of demonstrations, leading to instability in predictions. This paper shows that this vulnerability can be exploited to design a natural attack - difficult for model providers to detect - that achieves nearly 80% success rate on LLaMA-3 by simply permuting the demonstrations. Existing mitigation methods primarily rely on post-processing and fail to enhance the model's inherent robustness to input permutations, raising concerns about safety and reliability of LLMs. To address this issue, we propose Permutation-resilient learning (PEARL), a novel framework based on distributionally robust optimization (DRO), which optimizes model performance against the worst-case input permutation. Specifically, PEARL consists of a permutation-proposal network (P-Net) and the LLM. The P-Net generates the most challenging permutations by treating it as an optimal transport problem, which is solved using an entropy-constrained Sinkhorn algorithm. Through minimax optimization, the P-Net and the LLM iteratively optimize against each other, progressively improving the LLM's robustness. Experiments on synthetic pre-training and real-world instruction tuning tasks demonstrate that PEARL effectively mitigates permutation attacks and enhances performance. Notably, despite being trained on fewer shots and shorter contexts, PEARL achieves performance gains of up to 40% when scaled to many-shot and long-context scenarios, highlighting its efficiency and generalization capabilities.


HRP: High-Rank Preheating for Superior LoRA Initialization

arXiv.org Artificial Intelligence

This paper studies the crucial impact of initialization on the convergence properties of Low-Rank Adaptation (LoRA). We theoretically demonstrate that random initialization, a widely used schema, will likely lead LoRA to random low-rank results, rather than the best low-rank result. While this issue can be mitigated by adjusting initialization towards a well-informed direction, it relies on prior knowledge of the target, which is typically unknown in real-world scenarios. To approximate this well-informed initial direction, we propose High-Rank Preheating (HRP), which fine-tunes high-rank LoRA for a few steps and uses the singular value decomposition of the preheated result as a superior initialization. HRP initialization is theory-supported to combine the convergence strengths of high-rank LoRA and the generalization strengths of low-rank LoRA. Extensive experiments demonstrate that HRP significantly enhances LoRA's effectiveness across various models and tasks, achieving performance comparable to full-parameter fine-tuning and outperforming other initialization strategies.


AdaGC: Improving Training Stability for Large Language Model Pretraining

arXiv.org Artificial Intelligence

Large Language Models (LLMs) face increasing loss spikes during scaling, undermining training stability and final performance. While gradient clipping mitigates this issue, traditional global approaches poorly handle parameter-specific gradient variations and decaying gradient norms. We propose **AdaGC**, an adaptive gradient clipping framework that automatically adjusts local thresholds per parameter through exponential moving average of gradient norms. Theoretical analysis proves AdaGC's convergence under non-convex conditions. Extensive experiments demonstrate significant improvements: On Llama-2 7B/13B, AdaGC completely eliminates loss spikes while reducing WikiText perplexity by 3.5% (+0.14pp LAMBADA accuracy) for 7B and achieving 0.65% lower training loss with 1.47% reduced validation perplexity for 13B compared to global clipping. For CLIP ViT-Base, AdaGC converges 25% faster than StableAdamW with full spike elimination. The method shows universal effectiveness across architectures (Llama-2 7B/13B) and modalities (CLIP), with successful integration into diverse optimizers like AdamW and Lion. Source code will be released on GitHub.


Zero Token-Driven Deep Thinking in LLMs: Unlocking the Full Potential of Existing Parameters via Cyclic Refinement

arXiv.org Artificial Intelligence

Resource limitations often constrain the parameter counts of Large Language Models (LLMs), hindering their performance. While existing methods employ parameter sharing to reuse the same parameter set under fixed budgets, such approaches typically force each layer to assume multiple roles with a predetermined number of iterations, restricting efficiency and adaptability. In this work, we propose the Zero Token Transformer (ZTT), which features a head-tail decoupled parameter cycling method. We disentangle the first (head) and last (tail) layers from parameter cycling and iteratively refine only the intermediate layers. Furthermore, we introduce a Zero-Token Mechanism, an internal architectural component rather than an input token, to guide layer-specific computation. At each cycle, the model retrieves a zero token (with trainable key values) from a Zero-Token Pool, integrating it alongside regular tokens in the attention mechanism. The corresponding attention scores not only reflect each layer's computational importance but also enable dynamic early exits without sacrificing overall model accuracy. Our approach achieves superior performance under tight parameter budgets, effectively reduces computational overhead via early exits, and can be readily applied to fine-tune existing pre-trained models for enhanced efficiency and adaptability.