Shen, Chengchao
Modeling Global Distribution for Federated Learning with Label Distribution Skew
Sheng, Tao, Shen, Chengchao, Liu, Yuan, Ou, Yeyu, Qu, Zhe, Wang, Jianxin
Federated learning achieves joint training of deep models by connecting decentralized data sources, which can significantly mitigate the risk of privacy leakage. However, in a more general case, the distributions of labels among clients are different, called ``label distribution skew''. Directly applying conventional federated learning without consideration of label distribution skew issue significantly hurts the performance of the global model. To this end, we propose a novel federated learning method, named FedMGD, to alleviate the performance degradation caused by the label distribution skew issue. It introduces a global Generative Adversarial Network to model the global data distribution without access to local datasets, so the global model can be trained using the global information of data distribution without privacy leakage. The experimental results demonstrate that our proposed method significantly outperforms the state-of-the-art on several public benchmarks. Code is available at \url{https://github.com/Sheng-T/FedMGD}.
Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data
Fang, Gongfan, Bao, Yifan, Song, Jie, Wang, Xinchao, Xie, Donglin, Shen, Chengchao, Song, Mingli
Knowledge distillation~(KD) aims to craft a compact student model that imitates the behavior of a pre-trained teacher in a target domain. Prior KD approaches, despite their gratifying results, have largely relied on the premise that \emph{in-domain} data is available to carry out the knowledge transfer. Such an assumption, unfortunately, in many cases violates the practical setting, since the original training data or even the data domain is often unreachable due to privacy or copyright reasons. In this paper, we attempt to tackle an ambitious task, termed as \emph{out-of-domain} knowledge distillation~(OOD-KD), which allows us to conduct KD using only OOD data that can be readily obtained at a very low cost. Admittedly, OOD-KD is by nature a highly challenging task due to the agnostic domain gap. To this end, we introduce a handy yet surprisingly efficacious approach, dubbed as~\textit{MosaicKD}. The key insight behind MosaicKD lies in that, samples from various domains share common local patterns, even though their global semantic may vary significantly; these shared local patterns, in turn, can be re-assembled analogous to mosaic tiling, to approximate the in-domain data and to further alleviating the domain discrepancy. In MosaicKD, this is achieved through a four-player min-max game, in which a generator, a discriminator, a student network, are collectively trained in an adversarial manner, partially under the guidance of a pre-trained teacher. We validate MosaicKD over {classification and semantic segmentation tasks} across various benchmarks, and demonstrate that it yields results much superior to the state-of-the-art counterparts on OOD data. Our code is available at \url{https://github.com/zju-vipa/MosaicKD}.
Contrastive Model Inversion for Data-Free Knowledge Distillation
Fang, Gongfan, Song, Jie, Wang, Xinchao, Shen, Chengchao, Wang, Xingen, Song, Mingli
Model inversion, whose goal is to recover training data from a pre-trained model, has been recently proved feasible. However, existing inversion methods usually suffer from the mode collapse problem, where the synthesized instances are highly similar to each other and thus show limited effectiveness for downstream tasks, such as knowledge distillation. In this paper, we propose Contrastive Model Inversion~(CMI), where the data diversity is explicitly modeled as an optimizable objective, to alleviate the mode collapse issue. Our main observation is that, under the constraint of the same amount of data, higher data diversity usually indicates stronger instance discrimination. To this end, we introduce in CMI a contrastive learning objective that encourages the synthesizing instances to be distinguishable from the already synthesized ones in previous batches. Experiments of pre-trained models on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that CMI not only generates more visually plausible instances than the state of the arts, but also achieves significantly superior performance when the generated data are used for knowledge distillation. Code is available at \url{https://github.com/zju-vipa/DataFree}.
Progressive Network Grafting for Few-Shot Knowledge Distillation
Shen, Chengchao, Wang, Xinchao, Yin, Youtan, Song, Jie, Luo, Sihui, Song, Mingli
Knowledge distillation has demonstrated encouraging performances in deep model compression. Most existing approaches, however, require massive labeled data to accomplish the knowledge transfer, making the model compression a cumbersome and costly process. In this paper, we investigate the practical few-shot knowledge distillation scenario, where we assume only a few samples without human annotations are available for each category. To this end, we introduce a principled dual-stage distillation scheme tailored for few-shot data. In the first step, we graft the student blocks one by one onto the teacher, and learn the parameters of the grafted block intertwined with those of the other teacher blocks. In the second step, the trained student blocks are progressively connected and then together grafted onto the teacher network, allowing the learned student blocks to adapt themselves to each other and eventually replace the teacher network. Experiments demonstrate that our approach, with only a few unlabeled samples, achieves gratifying results on CIFAR10, CIFAR100, and ILSVRC-2012. On CIFAR10 and CIFAR100, our performances are even on par with those of knowledge distillation schemes that utilize the full datasets. The source code is available at https://github.com/zju-vipa/NetGraft.
Customizing Student Networks From Heterogeneous Teachers via Adaptive Knowledge Amalgamation
Shen, Chengchao, Xue, Mengqi, Wang, Xinchao, Song, Jie, Sun, Li, Song, Mingli
A massive number of well-trained deep networks have been released by developers online. These networks may focus on different tasks and in many cases are optimized for different datasets. In this paper, we study how to exploit such heterogeneous pre-trained networks, known as teachers, so as to train a customized student network that tackles a set of selective tasks defined by the user . W e assume no human annotations are available, and each teacher may be either single-or multi-task. T o this end, we introduce a dual-step strategy that first extracts the task-specific knowledge from the heterogeneous teachers sharing the same sub-task, and then amalgamates the extracted knowledge to build the student network. T o facilitate the training, we employ a selective learning scheme where, for each unlabelled sample, the student learns adaptively from only the teacher with the least prediction ambiguity. W e evaluate the proposed approach on several datasets and experimental results demonstrate that the student, learned by such adaptive knowledge amalgamation, achieves performances even better than those of the teachers.