Goto

Collaborating Authors

 Shen, Chao


Dialogue for Prompting: a Policy-Gradient-Based Discrete Prompt Optimization for Few-shot Learning

arXiv.org Artificial Intelligence

Prompt-based pre-trained language models (PLMs) paradigm have succeeded substantially in few-shot natural language processing (NLP) tasks. However, prior discrete prompt optimization methods require expert knowledge to design the base prompt set and identify high-quality prompts, which is costly, inefficient, and subjective. Meanwhile, existing continuous prompt optimization methods improve the performance by learning the ideal prompts through the gradient information of PLMs, whose high computational cost, and low readability and generalizability are often concerning. To address the research gap, we propose a Dialogue-comprised Policy-gradient-based Discrete Prompt Optimization ($DP_2O$) method. We first design a multi-round dialogue alignment strategy for readability prompt set generation based on GPT-4. Furthermore, we propose an efficient prompt screening metric to identify high-quality prompts with linear complexity. Finally, we construct a reinforcement learning (RL) framework based on policy gradients to match the prompts to inputs optimally. By training a policy network with only 0.67% of the PLM parameter size on the tasks in the few-shot setting, $DP_2O$ outperforms the state-of-the-art (SOTA) method by 1.52% in accuracy on average on four open-source datasets. Moreover, subsequent experiments also demonstrate that $DP_2O$ has good universality, robustness, and generalization ability.


Hard Adversarial Example Mining for Improving Robust Fairness

arXiv.org Artificial Intelligence

Adversarial training (AT) is widely considered the stateof-the-art Various approaches have been proposed to enhance the technique for improving the robustness of deep defense capabilities of DNNs against AEs. Adversarial neural networks (DNNs) against adversarial examples training (AT) has been demonstrated to be one of the (AE). Nevertheless, recent studies have revealed that adversarially most effective strategies [11]. Nevertheless, recent research trained models are prone to unfairness problems, [26, 23] have observed that the adversarially trained models restricting their applicability. In this paper, we empirically usually suffer from a serious unfairness problem, i.e., observe that this limitation may be attributed to serious adversarial there is a noticeable disparity in accuracy between different confidence overfitting, i.e., certain adversarial examples classes, seriously restricting their applicability in real-world with overconfidence. To alleviate this problem, we scenarios. Although some solutions have been proposed, propose HAM, a straightforward yet effective framework via the average robustness fairness score is still low and needs adaptive Hard Adversarial example Mining. HAM concentrates to be urgently addressed. On the other hand, several recent on mining hard adversarial examples while discarding studies [29, 17, 25] have focused on achieving efficient adversarial the easy ones in an adaptive fashion.


CILIATE: Towards Fairer Class-based Incremental Learning by Dataset and Training Refinement

arXiv.org Artificial Intelligence

Due to the model aging problem, Deep Neural Networks (DNNs) need updates to adjust them to new data distributions. The common practice leverages incremental learning (IL), e.g., Class-based Incremental Learning (CIL) that updates output labels, to update the model with new data and a limited number of old data. This avoids heavyweight training (from scratch) using conventional methods and saves storage space by reducing the number of old data to store. But it also leads to poor performance in fairness. In this paper, we show that CIL suffers both dataset and algorithm bias problems, and existing solutions can only partially solve the problem. We propose a novel framework, CILIATE, that fixes both dataset and algorithm bias in CIL. It features a novel differential analysis guided dataset and training refinement process that identifies unique and important samples overlooked by existing CIL and enforces the model to learn from them. Through this process, CILIATE improves the fairness of CIL by 17.03%, 22.46%, and 31.79% compared to state-of-the-art methods, iCaRL, BiC, and WA, respectively, based on our evaluation on three popular datasets and widely used ResNet models.


End-to-end Face-swapping via Adaptive Latent Representation Learning

arXiv.org Artificial Intelligence

Taking full advantage of the excellent performance of StyleGAN, style transfer-based face swapping methods have been extensively investigated recently. However, these studies require separate face segmentation and blending modules for successful face swapping, and the fixed selection of the manipulated latent code in these works is reckless, thus degrading face swapping quality, generalizability, and practicability. This paper proposes a novel and end-to-end integrated framework for high resolution and attribute preservation face swapping via Adaptive Latent Representation Learning. Specifically, we first design a multi-task dual-space face encoder by sharing the underlying feature extraction network to simultaneously complete the facial region perception and face encoding. This encoder enables us to control the face pose and attribute individually, thus enhancing the face swapping quality. Next, we propose an adaptive latent codes swapping module to adaptively learn the mapping between the facial attributes and the latent codes and select effective latent codes for improved retention of facial attributes. Finally, the initial face swapping image generated by StyleGAN2 is blended with the facial region mask generated by our encoder to address the background blur problem. Our framework integrating facial perceiving and blending into the end-to-end training and testing process can achieve high realistic face-swapping on wild faces without segmentation masks. Experimental results demonstrate the superior performance of our approach over state-of-the-art methods.


Artificial Intelligence Security Competition (AISC)

arXiv.org Artificial Intelligence

The security of artificial intelligence (AI) is an important research area towards safe, reliable, and trustworthy AI systems. To accelerate the research on AI security, the Artificial Intelligence Security Competition (AISC) was organized by the Zhongguancun Laboratory, China Industrial Control Systems Cyber Emergency Response Team, Institute for Artificial Intelligence, Tsinghua University, and RealAI as part of the Zhongguancun International Frontier Technology Innovation Competition (https://www.zgc-aisc.com/en). The competition consists of three tracks, including Deepfake Security Competition, Autonomous Driving Security Competition, and Face Recognition Security Competition. This report will introduce the competition rules of these three tracks and the solutions of top-ranking teams in each track.


Amplifying Membership Exposure via Data Poisoning

arXiv.org Machine Learning

As in-the-wild data are increasingly involved in the training stage, machine learning applications become more susceptible to data poisoning attacks. Such attacks typically lead to test-time accuracy degradation or controlled misprediction. In this paper, we investigate the third type of exploitation of data poisoning - increasing the risks of privacy leakage of benign training samples. To this end, we demonstrate a set of data poisoning attacks to amplify the membership exposure of the targeted class. We first propose a generic dirty-label attack for supervised classification algorithms. We then propose an optimization-based clean-label attack in the transfer learning scenario, whereby the poisoning samples are correctly labeled and look "natural" to evade human moderation. We extensively evaluate our attacks on computer vision benchmarks. Our results show that the proposed attacks can substantially increase the membership inference precision with minimum overall test-time model performance degradation. To mitigate the potential negative impacts of our attacks, we also investigate feasible countermeasures.


Property Inference Attacks Against GANs

arXiv.org Artificial Intelligence

While machine learning (ML) has made tremendous progress during the past decade, recent research has shown that ML models are vulnerable to various security and privacy attacks. So far, most of the attacks in this field focus on discriminative models, represented by classifiers. Meanwhile, little attention has been paid to the security and privacy risks of generative models, such as generative adversarial networks (GANs). In this paper, we propose the first set of training dataset property inference attacks against GANs. Concretely, the adversary aims to infer the macro-level training dataset property, i.e., the proportion of samples used to train a target GAN with respect to a certain attribute. A successful property inference attack can allow the adversary to gain extra knowledge of the target GAN's training dataset, thereby directly violating the intellectual property of the target model owner. Also, it can be used as a fairness auditor to check whether the target GAN is trained with a biased dataset. Besides, property inference can serve as a building block for other advanced attacks, such as membership inference. We propose a general attack pipeline that can be tailored to two attack scenarios, including the full black-box setting and partial black-box setting. For the latter, we introduce a novel optimization framework to increase the attack efficacy. Extensive experiments over four representative GAN models on five property inference tasks show that our attacks achieve strong performance. In addition, we show that our attacks can be used to enhance the performance of membership inference against GANs.


Black-box Adversarial Attacks on Commercial Speech Platforms with Minimal Information

arXiv.org Artificial Intelligence

Adversarial attacks against commercial black-box speech platforms, including cloud speech APIs and voice control devices, have received little attention until recent years. The current "black-box" attacks all heavily rely on the knowledge of prediction/confidence scores to craft effective adversarial examples, which can be intuitively defended by service providers without returning these messages. In this paper, we propose two novel adversarial attacks in more practical and rigorous scenarios. For commercial cloud speech APIs, we propose Occam, a decision-only black-box adversarial attack, where only final decisions are available to the adversary. In Occam, we formulate the decision-only AE generation as a discontinuous large-scale global optimization problem, and solve it by adaptively decomposing this complicated problem into a set of sub-problems and cooperatively optimizing each one. Our Occam is a one-size-fits-all approach, which achieves 100% success rates of attacks with an average SNR of 14.23dB, on a wide range of popular speech and speaker recognition APIs, including Google, Alibaba, Microsoft, Tencent, iFlytek, and Jingdong, outperforming the state-of-the-art black-box attacks. For commercial voice control devices, we propose NI-Occam, the first non-interactive physical adversarial attack, where the adversary does not need to query the oracle and has no access to its internal information and training data. We combine adversarial attacks with model inversion attacks, and thus generate the physically-effective audio AEs with high transferability without any interaction with target devices. Our experimental results show that NI-Occam can successfully fool Apple Siri, Microsoft Cortana, Google Assistant, iFlytek and Amazon Echo with an average SRoA of 52% and SNR of 9.65dB, shedding light on non-interactive physical attacks against voice control devices.


Infer-AVAE: An Attribute Inference Model Based on Adversarial Variational Autoencoder

arXiv.org Machine Learning

Facing the sparsity of user attributes on social networks, attribute inference aims at inferring missing attributes based on existing data and additional information such as social connections between users. Recently, Variational Autoencoders (VAEs) have been successfully applied to solve the problem in a semi-supervised way. However, the latent representations learned by the encoder contain either insufficient or useless information: i) MLPs can successfully reconstruct the input data but fail in completing missing part, ii) GNNs merge information according to social connections but suffer from over-smoothing, which is a common problem with GNNs. Moreover, existing methods neglect regulating the decoder, as a result, it lacks adequate inference ability and faces severe overfitting. To address the above issues, we propose an attribute inference model based on adversarial VAE (Infer-AVAE). Our model deliberately unifies MLPs and GNNs in encoder to learn dual latent representations: one contains only the observed attributes of each user, the other converges extra information from the neighborhood. Then, an adversarial network is trained to leverage the differences between the two representations and adversarial training is conducted to guide GNNs using MLPs for robust representations. What's more, mutual information constraint is introduced in loss function to specifically train the decoder as a discriminator. Thus, it can make better use of auxiliary information in the representations for attribute inference. Based on real-world social network datasets, experimental results demonstrate that our model averagely outperforms state-of-art by 7.0% in accuracy.


A Unified Framework for Analyzing and Detecting Malicious Examples of DNN Models

arXiv.org Machine Learning

Deep Neural Networks are well known to be vulnerable to adversarial attacks and backdoor attacks, where minor modifications on the input can mislead the models to give wrong results. Although defenses against adversarial attacks have been widely studied, research on mitigating backdoor attacks is still at an early stage. It is unknown whether there are any connections and common characteristics between the defenses against these two attacks. In this paper, we present a unified framework for detecting malicious examples and protecting the inference results of Deep Learning models. This framework is based on our observation that both adversarial examples and backdoor examples have anomalies during the inference process, highly distinguishable from benign samples. As a result, we repurpose and revise four existing adversarial defense methods for detecting backdoor examples. Extensive evaluations indicate these approaches provide reliable protection against backdoor attacks, with a higher accuracy than detecting adversarial examples. These solutions also reveal the relations of adversarial examples, backdoor examples and normal samples in model sensitivity, activation space and feature space. This can enhance our understanding about the inherent features of these two attacks, as well as the defense opportunities.