Plotting

 Sheldon, Daniel


Parameter Learning for Latent Network Diffusion

AAAI Conferences

Diffusion processes in networks are increasingly used to model dynamic phenomena such as the spread of information, wildlife, or social influence. Our work addresses the problem of learning the underlying parameters that govern such a diffusion process by observing the time at which nodes become active. A key advantage of our approach is that, unlike previous work, it can tolerate missing observations for some nodes in the diffusion process. Having incomplete observations is characteristic of offline networks used to model the spread of wildlife. We develop an EM algorithm to address parameter learning in such settings. Since both the E and M steps are computationally challenging, we employ a number of optimization methods such as nonlinear and difference-of-convex programming to address these challenges. Evaluation of the approach on the Red-cockaded Woodpecker conservation problem shows that it is highly robust and accurately learns parameters in various settings, even with more than 80% missing data.


Approximate Bayesian Inference for Reconstructing Velocities of Migrating Birds from Weather Radar

AAAI Conferences

Archived data from the WSR-88D network of weather radars in the US hold detailed information about the continent-scale migratory movements of birds over the last 20 years. However, significant technical challenges must be overcome to understand this information and harness its potential for science and conservation. We present an approximate Bayesian inference algorithm to reconstruct the velocity fields of birds migrating in the vicinity of a radar station. This is part of a larger project to quantify bird migration at large scales using weather radar data.


Scheduling Conservation Designs via Network Cascade Optimization

AAAI Conferences

We introduce the problem of scheduling land purchases to conserve an endangered species in a way that achieves maximum population spread but delays purchases as long as possible, so that conservation planners retain maximum flexibility and use available budgets in the most efficient way. We develop the problem formally as a stochastic optimization problem over a network cascade model describing the population spread, and present a solution approach that reduces the stochastic problem to a novel variant of a Steiner tree problem. We give a primal-dual algorithm for the problem that computes both a feasible solution and a bound on the quality of an optimal solution. Our experiments, using actual conservation data and a standard diffusion model, show that the approach produces near optimal results and is much more scalable than more generic off-the-shelf optimizers.