Goto

Collaborating Authors

 Shek, Anthony


RelCAT: Advancing Extraction of Clinical Inter-Entity Relationships from Unstructured Electronic Health Records

arXiv.org Artificial Intelligence

This study introduces RelCAT (Relation Concept Annotation Toolkit), an interactive tool, library, and workflow designed to classify relations between entities extracted from clinical narratives. Building upon the CogStack MedCAT framework, RelCAT addresses the challenge of capturing complete clinical relations dispersed within text. The toolkit implements state-of-the-art machine learning models such as BERT and Llama along with proven evaluation and training methods. We demonstrate a dataset annotation tool (built within MedCATTrainer), model training, and evaluate our methodology on both openly available gold-standard and real-world UK National Health Service (NHS) hospital clinical datasets. We perform extensive experimentation and a comparative analysis of the various publicly available models with varied approaches selected for model fine-tuning. Finally, we achieve macro F1-scores of 0.977 on the gold-standard n2c2, surpassing the previous state-of-the-art performance, and achieve performance of >=0.93 F1 on our NHS gathered datasets.


Validating transformers for redaction of text from electronic health records in real-world healthcare

arXiv.org Artificial Intelligence

Protecting patient privacy in healthcare records is a top priority, and redaction is a commonly used method for obscuring directly identifiable information in text. Rule-based methods have been widely used, but their precision is often low causing over-redaction of text and frequently not being adaptable enough for non-standardised or unconventional structures of personal health information. Deep learning techniques have emerged as a promising solution, but implementing them in real-world environments poses challenges due to the differences in patient record structure and language across different departments, hospitals, and countries. In this study, we present AnonCAT, a transformer-based model and a blueprint on how deidentification models can be deployed in real-world healthcare. AnonCAT was trained through a process involving manually annotated redactions of real-world documents from three UK hospitals with different electronic health record systems and 3116 documents. The model achieved high performance in all three hospitals with a Recall of 0.99, 0.99 and 0.96. Our findings demonstrate the potential of deep learning techniques for improving the efficiency and accuracy of redaction in global healthcare data and highlight the importance of building workflows which not just use these models but are also able to continually fine-tune and audit the performance of these algorithms to ensure continuing effectiveness in real-world settings. This approach provides a blueprint for the real-world use of de-identifying algorithms through fine-tuning and localisation, the code together with tutorials is available on GitHub (https://github.com/CogStack/MedCAT).


Foresight -- Generative Pretrained Transformer (GPT) for Modelling of Patient Timelines using EHRs

arXiv.org Artificial Intelligence

Background: Electronic Health Records hold detailed longitudinal information about each patient's health status and general clinical history, a large portion of which is stored within the unstructured text. Existing approaches focus mostly on structured data and a subset of single-domain outcomes. We explore how temporal modelling of patients from free text and structured data, using deep generative transformers can be used to forecast a wide range of future disorders, substances, procedures or findings. Methods: We present Foresight, a novel transformer-based pipeline that uses named entity recognition and linking tools to convert document text into structured, coded concepts, followed by providing probabilistic forecasts for future medical events such as disorders, substances, procedures and findings. We processed the entire free-text portion from three different hospital datasets totalling 811336 patients covering both physical and mental health. Findings: On tests in two UK hospitals (King's College Hospital, South London and Maudsley) and the US MIMIC-III dataset precision@10 0.68, 0.76 and 0.88 was achieved for forecasting the next disorder in a patient timeline, while precision@10 of 0.80, 0.81 and 0.91 was achieved for forecasting the next biomedical concept. Foresight was also validated on 34 synthetic patient timelines by five clinicians and achieved relevancy of 97% for the top forecasted candidate disorder. As a generative model, it can forecast follow-on biomedical concepts for as many steps as required. Interpretation: Foresight is a general-purpose model for biomedical concept modelling that can be used for real-world risk forecasting, virtual trials and clinical research to study the progression of disorders, simulate interventions and counterfactuals, and educational purposes.


Multi-domain Clinical Natural Language Processing with MedCAT: the Medical Concept Annotation Toolkit

arXiv.org Artificial Intelligence

Electronic health records (EHR) contain large volumes of unstructured text, requiring the application of Information Extraction (IE) technologies to enable clinical analysis. We present the open source Medical Concept Annotation Toolkit (MedCAT) that provides: a) a novel self-supervised machine learning algorithm for extracting concepts using any concept vocabulary including UMLS/SNOMED-CT; b) a feature-rich annotation interface for customizing and training IE models; and c) integrations to the broader CogStack ecosystem for vendor-agnostic health system deployment. We show improved performance in extracting UMLS concepts from open datasets ( F1 0.467-0.791 vs 0.384-0.691). Further real-world validation demonstrates SNOMED-CT extraction at 3 large London hospitals with self-supervised training over ~8.8B words from ~17M clinical records and further fine-tuning with ~6K clinician annotated examples. We show strong transferability ( F1 >0.94) between hospitals, datasets and concept types indicating cross-domain EHR-agnostic utility for accelerated clinical and research use cases.