Goto

Collaborating Authors

 She, Qiaoqiao


Multimodal Table Understanding

arXiv.org Artificial Intelligence

Although great progress has been made by previous table understanding methods including recent approaches based on large language models (LLMs), they rely heavily on the premise that given tables must be converted into a certain text sequence (such as Markdown or HTML) to serve as model input. However, it is difficult to access such high-quality textual table representations in some real-world scenarios, and table images are much more accessible. Therefore, how to directly understand tables using intuitive visual information is a crucial and urgent challenge for developing more practical applications. In this paper, we propose a new problem, multimodal table understanding, where the model needs to generate correct responses to various table-related requests based on the given table image. To facilitate both the model training and evaluation, we construct a large-scale dataset named MMTab, which covers a wide spectrum of table images, instructions and tasks. On this basis, we develop Table-LLaVA, a generalist tabular multimodal large language model (MLLM), which significantly outperforms recent open-source MLLM baselines on 23 benchmarks under held-in and held-out settings. The code and data is available at this https://github.com/SpursGoZmy/Table-LLaVA


Less Learn Shortcut: Analyzing and Mitigating Learning of Spurious Feature-Label Correlation

arXiv.org Artificial Intelligence

Recent research has revealed that deep neural networks often take dataset biases as a shortcut to make decisions rather than understand tasks, leading to failures in real-world applications. In this study, we focus on the spurious correlation between word features and labels that models learn from the biased data distribution of training data. In particular, we define the word highly co-occurring with a specific label as biased word, and the example containing biased word as biased example. Our analysis shows that biased examples are easier for models to learn, while at the time of prediction, biased words make a significantly higher contribution to the models' predictions, and models tend to assign predicted labels over-relying on the spurious correlation between words and labels. To mitigate models' over-reliance on the shortcut (i.e. spurious correlation), we propose a training strategy Less-Learn-Shortcut (LLS): our strategy quantifies the biased degree of the biased examples and down-weights them accordingly. Experimental results on Question Matching, Natural Language Inference and Sentiment Analysis tasks show that LLS is a task-agnostic strategy and can improve the model performance on adversarial data while maintaining good performance on in-domain data.


RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage Re-ranking

arXiv.org Artificial Intelligence

In various natural language processing tasks, passage retrieval and passage re-ranking are two key procedures in finding and ranking relevant information. Since both the two procedures contribute to the final performance, it is important to jointly optimize them in order to achieve mutual improvement. In this paper, we propose a novel joint training approach for dense passage retrieval and passage re-ranking. A major contribution is that we introduce the dynamic listwise distillation, where we design a unified listwise training approach for both the retriever and the re-ranker. During the dynamic distillation, the retriever and the re-ranker can be adaptively improved according to each other's relevance information. We also propose a hybrid data augmentation strategy to construct diverse training instances for listwise training approach. Extensive experiments show the effectiveness of our approach on both MSMARCO and Natural Questions datasets. Our code is available at https://github.com/PaddlePaddle/RocketQA.


$k$NN Prompting: Beyond-Context Learning with Calibration-Free Nearest Neighbor Inference

arXiv.org Artificial Intelligence

In-Context Learning (ICL), which formulates target tasks as prompt completion conditioned on in-context demonstrations, has become the prevailing utilization of LLMs. In this paper, we first disclose an actual predicament for this typical usage that it can not scale up with training data due to context length restriction. Besides, existing works have shown that ICL also suffers from various biases and requires delicate calibration treatment. To address both challenges, we advocate a simple and effective solution, $k$NN Prompting, which first queries LLM with training data for distributed representations, then predicts test instances by simply referring to nearest neighbors. We conduct comprehensive experiments to demonstrate its two-fold superiority: 1) Calibration-Free: $k$NN Prompting does not directly align LLM output distribution with task-specific label space, instead leverages such distribution to align test and training instances. It significantly outperforms state-of-the-art calibration-based methods under comparable few-shot scenario. 2) Beyond-Context: $k$NN Prompting can further scale up effectively with as many training data as are available, continually bringing substantial improvements. The scaling trend holds across 10 orders of magnitude ranging from 2 shots to 1024 shots as well as different LLMs scales ranging from 0.8B to 30B. It successfully bridges data scaling into model scaling, and brings new potentials for the gradient-free paradigm of LLM deployment. Code is publicly available.


UPainting: Unified Text-to-Image Diffusion Generation with Cross-modal Guidance

arXiv.org Artificial Intelligence

Diffusion generative models have recently greatly improved the power of text-conditioned image generation. Existing image generation models mainly include text conditional diffusion model and cross-modal guided diffusion model, which are good at small scene image generation and complex scene image generation respectively. In this work, we propose a simple yet effective approach, namely UPainting, to unify simple and complex scene image generation, as shown in Figure 1. Based on architecture improvements and diverse guidance schedules, UPainting effectively integrates cross-modal guidance from a pretrained image-text matching model into a text conditional diffusion model that utilizes a pretrained Transformer language model as the text encoder. Our key findings is that combining the power of large-scale Transformer language model in understanding language and image-text matching model in capturing cross-modal semantics and style, is effective to improve sample fidelity and image-text alignment of image generation. In this way, UPainting has a more general image generation capability, which can generate images of both simple and complex scenes more effectively. To comprehensively compare text-to-image models, we further create a more general benchmark, UniBench, with well-written Chinese and English prompts in both simple and complex scenes. We compare UPainting with recent models and find that UPainting greatly outperforms other models in terms of caption similarity and image fidelity in both simple and complex scenes. UPainting project page \url{https://upainting.github.io/}.