Goto

Collaborating Authors

 Shavlovsky, Michael


HyperDPO: Conditioned One-Shot Multi-Objective Fine-Tuning Framework

arXiv.org Artificial Intelligence

In LLM alignment and many other ML applications, one often faces the Multi-Objective Fine-Tuning (MOFT) problem, i.e. fine-tuning an existing model with datasets labeled w.r.t. different objectives simultaneously. To address the challenge, we propose the HyperDPO framework, a conditioned one-shot fine-tuning approach that extends the Direct Preference Optimization (DPO) technique, originally developed for efficient LLM alignment with preference data, to accommodate the MOFT settings. By substituting the Bradley-Terry-Luce model in DPO with the Plackett-Luce model, our framework is capable of handling a wide range of MOFT tasks that involve listwise ranking datasets. Compared with previous approaches, HyperDPO enjoys an efficient one-shot training process for profiling the Pareto front of auxiliary objectives, and offers post-training control over trade-offs. Additionally, we propose a novel Hyper Prompt Tuning design, that conveys continuous importance weight across objectives to transformer-based models without altering their architecture, and investigate the potential of temperature-conditioned networks for enhancing the flexibility of post-training control. We demonstrate the effectiveness and efficiency of the HyperDPO framework through its applications to various tasks, including Learning-to-Rank (LTR) and LLM alignment, highlighting its viability for large-scale ML deployments.


A Sinkhorn-type Algorithm for Constrained Optimal Transport

arXiv.org Artificial Intelligence

Entropic optimal transport (OT) and the Sinkhorn algorithm have made it practical for machine learning practitioners to perform the fundamental task of calculating transport distance between statistical distributions. In this work, we focus on a general class of OT problems under a combination of equality and inequality constraints. We derive the corresponding entropy regularization formulation and introduce a Sinkhorn-type algorithm for such constrained OT problems supported by theoretical guarantees. We first bound the approximation error when solving the problem through entropic regularization, which reduces exponentially with the increase of the regularization parameter. Furthermore, we prove a sublinear first-order convergence rate of the proposed Sinkhorn-type algorithm in the dual space by characterizing the optimization procedure with a Lyapunov function. To achieve fast and higher-order convergence under weak entropy regularization, we augment the Sinkhorn-type algorithm with dynamic regularization scheduling and second-order acceleration. Overall, this work systematically combines recent theoretical and numerical advances in entropic optimal transport with the constrained case, allowing practitioners to derive approximate transport plans in complex scenarios.


Accelerating Sinkhorn Algorithm with Sparse Newton Iterations

arXiv.org Artificial Intelligence

Computing the optimal transport distance between statistical distributions is a fundamental task in machine learning. One remarkable recent advancement is entropic regularization and the Sinkhorn algorithm, which utilizes only matrix scaling and guarantees an approximated solution with near-linear runtime. Despite the success of the Sinkhorn algorithm, its runtime may still be slow due to the potentially large number of iterations needed for convergence. To achieve possibly super-exponential convergence, we present Sinkhorn-Newton-Sparse (SNS), an extension to the Sinkhorn algorithm, by introducing early stopping for the matrix scaling steps and a second stage featuring a Newton-type subroutine. Adopting the variational viewpoint that the Sinkhorn algorithm maximizes a concave Lyapunov potential, we offer the insight that the Hessian matrix of the potential function is approximately sparse. Sparsification of the Hessian results in a fast $O(n^2)$ per-iteration complexity, the same as the Sinkhorn algorithm. In terms of total iteration count, we observe that the SNS algorithm converges orders of magnitude faster across a wide range of practical cases, including optimal transportation between empirical distributions and calculating the Wasserstein $W_1, W_2$ distance of discretized densities. The empirical performance is corroborated by a rigorous bound on the approximate sparsity of the Hessian matrix.


Pretrained deep models outperform GBDTs in Learning-To-Rank under label scarcity

arXiv.org Artificial Intelligence

While deep learning (DL) models are state-of-the-art in text and image domains, they have not yet consistently outperformed Gradient Boosted Decision Trees (GBDTs) on tabular Learning-To-Rank (LTR) problems. Most of the recent performance gains attained by DL models in text and image tasks have used unsupervised pretraining, which exploits orders of magnitude more unlabeled data than labeled data. To the best of our knowledge, unsupervised pretraining has not been applied to the LTR problem, which often produces vast amounts of unlabeled data. In this work, we study whether unsupervised pretraining of deep models can improve LTR performance over GBDTs and other non-pretrained models. By incorporating simple design choices--including SimCLR-Rank, an LTR-specific pretraining loss--we produce pretrained deep learning models that consistently (across datasets) outperform GBDTs (and other non-pretrained rankers) in the case where there is more unlabeled data than labeled data. This performance improvement occurs not only on average but also on outlier queries. We base our empirical conclusions off of experiments on (1) public benchmark tabular LTR datasets, and (2) a large industry-scale proprietary ranking dataset. Code is provided at https://anonymous.4open.science/r/ltr-pretrain-0DAD/README.md.


Reliable Aggregation of Boolean Crowdsourced Tasks

AAAI Conferences

We propose novel algorithms for the problem of crowdsourcing binary labels. Such binary labeling tasks are very common in crowdsourcing platforms, for instance, to judge the appropriateness of web content or to flag vandalism. We propose two unsupervised algorithms: one simple to implement albeit derived heuristically, and one based on iterated bayesian parameter estimation of user reputation models. We provide mathematical insight into the benefits of the proposed algorithms over existing approaches, and we confirm these insights by showing that both algorithms offer improved performance on many occasions across both synthetic and real-world datasets obtained via Amazon Mechanical Turk.