Goto

Collaborating Authors

 Sharma, Vivek


Bridging the Data Provenance Gap Across Text, Speech and Video

arXiv.org Artificial Intelligence

Progress in AI is driven largely by the scale and quality of training data. Despite this, there is a deficit of empirical analysis examining the attributes of well-established datasets beyond text. In this work we conduct the largest and first-of-its-kind longitudinal audit across modalities--popular text, speech, and video datasets--from their detailed sourcing trends and use restrictions to their geographical and linguistic representation. Our manual analysis covers nearly 4000 public datasets between 1990-2024, spanning 608 languages, 798 sources, 659 organizations, and 67 countries. We find that multimodal machine learning applications have overwhelmingly turned to web-crawled, synthetic, and social media platforms, such as YouTube, for their training sets, eclipsing all other sources since 2019. Secondly, tracing the chain of dataset derivations we find that while less than 33% of datasets are restrictively licensed, over 80% of the source content in widely-used text, speech, and video datasets, carry non-commercial restrictions. Finally, counter to the rising number of languages and geographies represented in public AI training datasets, our audit demonstrates measures of relative geographical and multilingual representation have failed to significantly improve their coverage since 2013. We believe the breadth of our audit enables us to empirically examine trends in data sourcing, restrictions, and Western-centricity at an ecosystem-level, and that visibility into these questions are essential to progress in responsible AI. As a contribution to ongoing improvements in dataset transparency and responsible use, we release our entire multimodal audit, allowing practitioners to trace data provenance across text, speech, and video.


Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context

arXiv.org Artificial Intelligence

In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.


MedLM: Exploring Language Models for Medical Question Answering Systems

arXiv.org Artificial Intelligence

In the face of rapidly expanding online medical literature, automated systems for aggregating and summarizing information are becoming increasingly crucial for healthcare professionals and patients. Large Language Models (LLMs), with their advanced generative capabilities, have shown promise in various NLP tasks, and their potential in the healthcare domain, particularly for Closed-Book Generative QnA, is significant. However, the performance of these models in domain-specific tasks such as medical Q&A remains largely unexplored. This study aims to fill this gap by comparing the performance of general and medical-specific distilled LMs for medical Q&A. We aim to evaluate the effectiveness of fine-tuning domain-specific LMs and compare the performance of different families of Language Models. The study will address critical questions about these models' reliability, comparative performance, and effectiveness in the context of medical Q&A. The findings will provide valuable insights into the suitability of different LMs for specific applications in the medical domain.


Temporally-Weighted Hierarchical Clustering for Unsupervised Action Segmentation

arXiv.org Artificial Intelligence

Action segmentation refers to inferring boundaries of semantically consistent visual concepts in videos and is an important requirement for many video understanding tasks. For this and other video understanding tasks, supervised approaches have achieved encouraging performance but require a high volume of detailed frame-level annotations. We present a fully automatic and unsupervised approach for segmenting actions in a video that does not require any training. Our proposal is an effective temporally-weighted hierarchical clustering algorithm that can group semantically consistent frames of the video. Our main finding is that representing a video with a 1-nearest neighbor graph by taking into account the time progression is sufficient to form semantically and temporally consistent clusters of frames where each cluster may represent some action in the video. Additionally, we establish strong unsupervised baselines for action segmentation and show significant performance improvements over published unsupervised methods on five challenging action segmentation datasets. Our approach also outperforms weakly-supervised methods by large margins on 4 of these datasets. Interestingly, we also achieve better results than many fully-supervised methods that have reported results on these datasets. Our code is available at https://github.com/ssarfraz/FINCH-Clustering/tree/master/TW-FINCH


DISCO: Dynamic and Invariant Sensitive Channel Obfuscation for deep neural networks

arXiv.org Artificial Intelligence

Recent deep learning models have shown remarkable performance in image classification. While these deep learning systems are getting closer to practical deployment, the common assumption made about data is that it does not carry any sensitive information. This assumption may not hold for many practical cases, especially in the domain where an individual's personal information is involved, like healthcare and facial recognition systems. We posit that selectively removing features in this latent space can protect the sensitive information and provide a better privacy-utility trade-off. Consequently, we propose DISCO which learns a dynamic and data driven pruning filter to selectively obfuscate sensitive information in the feature space. We propose diverse attack schemes for sensitive inputs \& attributes and demonstrate the effectiveness of DISCO against state-of-the-art methods through quantitative and qualitative evaluation. Finally, we also release an evaluation benchmark dataset of 1 million sensitive representations to encourage rigorous exploration of novel attack schemes.


SplitNN-driven Vertical Partitioning

arXiv.org Machine Learning

In this work, we introduce SplitNN-driven Vertical Partitioning, a configuration of a distributed deep learning method called SplitNN to facilitate learning from vertically distributed features. SplitNN does not share raw data or model details with collaborating institutions. The proposed configuration allows training among institutions holding diverse sources of data without the need of complex encryption algorithms or secure computation protocols. We evaluate several configurations to merge the outputs of the split models, and compare performance and resource efficiency. The method is flexible and allows many different configurations to tackle the specific challenges posed by vertically split datasets.