Sharma, Arpit
Retraining DistilBERT for a Voice Shopping Assistant by Using Universal Dependencies
Jayarao, Pratik, Sharma, Arpit
In this work, we retrained the distilled BERT language model for Walmart's voice shopping assistant on retail domain-specific data. We also injected universal syntactic dependencies to improve the performance of the model further. The Natural Language Understanding (NLU) components of the voice assistants available today are heavily dependent on language models for various tasks. The generic language models such as BERT and RoBERTa are useful for domain-independent assistants but have limitations when they cater to a specific domain. For example, in the shopping domain, the token 'horizon' means a brand instead of its literal meaning. Generic models are not able to capture such subtleties. So, in this work, we retrained a distilled version of the BERT language model on retail domain-specific data for Walmart's voice shopping assistant. We also included universal dependency-based features in the retraining process further to improve the performance of the model on downstream tasks. We evaluated the performance of the retrained language model on four downstream tasks, including intent-entity detection, sentiment analysis, voice title shortening and proactive intent suggestion. We observed an increase in the performance of all the downstream tasks of up to 1.31% on average.
Using Answer Set Programming for Commonsense Reasoning in the Winograd Schema Challenge
Sharma, Arpit
The Winograd Schema Challenge (WSC) is a natural language understanding task proposed as an alternative to the Turing test in 2011. In this work we attempt to solve WSC problems by reasoning with additional knowledge. By using an approach built on top of graph-subgraph isomorphism encoded using Answer Set Programming (ASP) we were able to handle 240 out of 291 WSC problems. The ASP encoding allows us to add additional constraints in an elaboration tolerant manner. In the process we present a graph based representation of WSC problems as well as relevant commonsense knowledge. This paper is under consideration for acceptance in TPLP.
Automatic Extraction of Events-Based Conditional Commonsense Knowledge
Sharma, Arpit (Arizona State University) | Baral, Chitta (Arizona State University)
Reasoning with commonsense knowledge plays an important role in various NLU tasks. Often the commonsense knowledge is needed to be extracted separately. In this paper we present our work of automatically extracting a certain type of commonsense knowledge. The knowledge resembles the kind that humans have about the events and the entities that participate in those events. One example of such knowledge is that "IF A bullying B causes T rescued Z THEN (possibly) Z = B ''. We call this knowledge an event-based conditional commonsense. Our approach involves semantic parsing of natural language sentences by using the Knowledge Parser (K-Parser) and extracting the knowledge, if found. We extracted about 19000 instances of such knowledge from the Open American National Corpus.
Towards Addressing the Winograd Schema Challenge — Building and Using a Semantic Parser and a Knowledge Hunting Module
Sharma, Arpit (Arizona State University) | Vo, Nguyen H (Arizona State University) | Aditya, Somak (Arizona State University) | Baral, Chitta (Arizona State University)
Concerned about the Turing test's ability to correctly evaluate if a system exhibits human-like intelligence, the Winograd Schema Challenge (WSC) has been proposed as an alternative. A Winograd Schema consists of a sentence and a question. The answers to the questions are intuitive for humans but are designed to be difficult for machines, as they require various forms of commonsense knowledge about the sentence. In this paper we demonstrate our progress towards addressing the WSC. We present an approach that identifies the knowledge needed to answer a challenge question, hunts down that knowledge from text repositories, and then reasons with them to come up with the answer. In the process we develop a semantic parser (www.kparser.org). We show that our approach works well with respect to a subset of Winograd schemas.
An Approach to Solve Winograd Schema Challenge Using Automatically Extracted Commonsense Knowledge
Sharma, Arpit (Arizona State University) | Vo, Nguyen H. (Arizona State University) | Gaur, Shruti (Arizona State University) | Baral, Chitta (Arizona State University)
The Winograd Schema Challenge has recently been proposed as an alternative to the Turing test. A Winograd Schema consists of a sentence and question pair such that the answer to the question depends on the resolution of a definite pronoun in the sentence. The answer is fairly intuitive for humans but is difficult for machines because it requires commonsense knowledge about words or concepts in the sentence. In this paper we propose a novel technique which semantically parses the text, hunts for the needed commonsense knowledge and uses that knowledge to answer the given question.