Plotting

 Shareghi, Ehsan


Exploring the Potential of Multimodal LLM with Knowledge-Intensive Multimodal ASR

arXiv.org Artificial Intelligence

Recent advancements in multimodal large language models (MLLMs) have made significant progress in integrating information across various modalities, yet real-world applications in educational and scientific domains remain challenging. This paper introduces the Multimodal Scientific ASR (MS-ASR) task, which focuses on transcribing scientific conference videos by leveraging visual information from slides to enhance the accuracy of technical terminologies. Realized that traditional metrics like WER fall short in assessing performance accurately, prompting the proposal of severity-aware WER (SWER) that considers the content type and severity of ASR errors. We propose the Scientific Vision Augmented ASR (SciVASR) framework as a baseline method, enabling MLLMs to improve transcript quality through post-editing. Evaluations of state-of-the-art MLLMs, including GPT-4o, show a 45% improvement over speech-only baselines, highlighting the importance of multimodal information integration.


Aligning with Human Judgement: The Role of Pairwise Preference in Large Language Model Evaluators

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have demonstrated promising capabilities as automatic evaluators in assessing the quality of generated natural language. However, LLMs still exhibit biases in evaluation and often struggle to generate coherent evaluations that align with human assessments. In this work, we first conduct a systematic study of the misalignment between LLM evaluators and human judgement, revealing that existing calibration methods aimed at mitigating biases are insufficient for effectively aligning LLM evaluators. Inspired by the use of preference data in RLHF, we formulate the evaluation as a ranking problem and introduce Pairwise-preference Search (PairS), an uncertainty-guided search method that employs LLMs to conduct pairwise comparisons and efficiently ranks candidate texts. PairS achieves state-of-the-art performance on representative evaluation tasks and demonstrates significant improvements over direct scoring. Furthermore, we provide insights into the role of pairwise preference in quantifying the transitivity of LLMs and demonstrate how PairS benefits from calibration.


Conversational SimulMT: Efficient Simultaneous Translation with Large Language Models

arXiv.org Artificial Intelligence

Simultaneous machine translation (SimulMT) presents a challenging trade-off between translation quality and latency. Recent studies have shown that LLMs can achieve good performance in SimulMT tasks. However, this often comes at the expense of high inference cost and latency. In this paper, we propose a conversational SimulMT framework to enhance the inference efficiency of LLM-based SimulMT through multi-turn-dialogue-based decoding. Our experiments with Llama2-7b-chat on two SimulMT benchmarks demonstrate the superiority of LLM in translation quality while achieving comparable computational latency to specialized SimulMT models.


Unlocking Structure Measuring: Introducing PDD, an Automatic Metric for Positional Discourse Coherence

arXiv.org Artificial Intelligence

Recent large language models (LLMs) have shown remarkable performance in aligning generated text with user intentions across various tasks. When it comes to long-form text generation, there has been a growing interest in generation from a discourse coherence perspective. However, existing lexical or semantic metrics such as BLEU, ROUGE, BertScore cannot effectively capture the discourse coherence. The development of discourse-specific automatic evaluation methods for assessing the output of LLMs warrants greater focus and exploration. In this paper, we present a novel automatic metric designed to quantify the discourse divergence between two long-form articles. Extensive experiments on three datasets from representative domains demonstrate that our metric aligns more closely with human preferences and GPT-4 coherence evaluation, outperforming existing evaluation methods.


Towards Uncertainty-Aware Language Agent

arXiv.org Artificial Intelligence

While Language Agents have achieved promising success by placing Large Language Models at the core of a more versatile design that dynamically interacts with the external world, the existing approaches neglect the notion of uncertainty during these interactions. We present the Uncertainty-Aware Language Agent (UALA), a framework that orchestrates the interaction between the agent and the external world using uncertainty quantification. Compared with other well-known counterparts like ReAct, our extensive experiments across 3 representative tasks (HotpotQA, StrategyQA, MMLU) and various LLM sizes demonstrate that UALA brings a significant improvement of performance, while having a substantially lower reliance on the external world (i.e., reduced number of tool calls and tokens). Our analyses provide various insights including the great potential of UALA compared with agent fine-tuning, and underscore the unreliability of verbalised confidence of LLMs as a proxy for uncertainty.


Equipping Language Models with Tool Use Capability for Tabular Data Analysis in Finance

arXiv.org Artificial Intelligence

Large language models (LLMs) have exhibited an array of reasoning capabilities but face challenges like error propagation and hallucination, particularly in specialised areas like finance, where data is heterogeneous, and precision is paramount. We explore the potential of language model augmentation with external tools to mitigate these limitations and offload certain reasoning steps to external tools that are more suited for the task, instead of solely depending on the LLM's inherent abilities. More concretely, using financial domain question-answering datasets, we apply supervised fine-tuning on a LLaMA-2 13B Chat model to act both as a 'task router' and 'task solver'. The 'task router' dynamically directs a question to either be answered internally by the LLM or externally via the right tool from the tool set. Our tool-equipped SFT model, Raven, demonstrates an improvement of 35.2% and 5.06% over the base model and SFT-only baselines, respectively, and is highly competitive with strong GPT-3.5 results. To the best of our knowledge, our work is the first that investigates tool augmentation of language models for the finance domain.


Reward Engineering for Generating Semi-structured Explanation

arXiv.org Artificial Intelligence

Semi-structured explanation depicts the implicit process of a reasoner with an explicit representation. This explanation highlights how available information in a specific query is utilised and supplemented with information a reasoner produces from its internal weights towards generating an answer. Despite the recent improvements in generative capabilities of language models, producing structured explanations to verify a model's true reasoning capabilities remains a challenge. This issue is particularly pronounced for not-so-large LMs (e.g., FLAN-T5-XXL). In this work, we first underscore the limitations of supervised fine-tuning (SFT) in tackling this challenge, and then introduce a carefully crafted reward engineering method in reinforcement learning (RL) to better address this problem. We investigate multiple reward aggregation methods and provide a detailed discussion which sheds light on the promising potential of RL for future research. Our proposed method on two semi-structured explanation generation benchmarks (ExplaGraph and COPA-SSE) achieves new state-of-the-art results.


Instruct-SCTG: Guiding Sequential Controlled Text Generation through Instructions

arXiv.org Artificial Intelligence

Instruction-tuned large language models have shown remarkable performance in aligning generated text with user intentions across various tasks. However, maintaining human-like discourse structure in the generated text remains a challenging research question. In this paper, we propose Instruct-SCTG, a flexible and effective sequential framework that harnesses instruction-tuned language models to generate structurally coherent text in both fine-tuned and zero-shot setups. Our framework generates articles in a section-by-section manner, aligned with the desired human structure using natural language instructions. Furthermore, we introduce a new automatic metric that measures discourse divergence in a fuzzy manner. Extensive experiments on three datasets from representative domains of news and recipes demonstrate the state-of-the-art performance of our framework in imposing discourse structure during text generation, as verified by both automatic and human evaluation. Our code will be available on Github.


A Minimal Approach for Natural Language Action Space in Text-based Games

arXiv.org Artificial Intelligence

Text-based games (TGs) are language-based interactive environments for reinforcement learning. While language models (LMs) and knowledge graphs (KGs) are commonly used for handling large action space in TGs, it is unclear whether these techniques are necessary or overused. In this paper, we revisit the challenge of exploring the action space in TGs and propose $ \epsilon$-admissible exploration, a minimal approach of utilizing admissible actions, for training phase. Additionally, we present a text-based actor-critic (TAC) agent that produces textual commands for game, solely from game observations, without requiring any KG or LM. Our method, on average across 10 games from Jericho, outperforms strong baselines and state-of-the-art agents that use LM and KG. Our approach highlights that a much lighter model design, with a fresh perspective on utilizing the information within the environments, suffices for an effective exploration of exponentially large action spaces.


POSQA: Probe the World Models of LLMs with Size Comparisons

arXiv.org Artificial Intelligence

Embodied language comprehension emphasizes that language understanding is not solely a matter of mental processing in the brain but also involves interactions with the physical and social environment. With the explosive growth of Large Language Models (LLMs) and their already ubiquitous presence in our daily lives, it is becoming increasingly necessary to verify their real-world understanding. Inspired by cognitive theories, we propose POSQA: a Physical Object Size Question Answering dataset with simple size comparison questions to examine the extremity and analyze the potential mechanisms of the embodied comprehension of the latest LLMs. We show that even the largest LLMs today perform poorly under the zero-shot setting. We then push their limits with advanced prompting techniques and external knowledge augmentation. Furthermore, we investigate whether their real-world comprehension primarily derives from contextual information or internal weights and analyse the impact of prompt formats and report bias of different objects. Our results show that real-world understanding that LLMs shaped from textual data can be vulnerable to deception and confusion by the surface form of prompts, which makes it less aligned with human behaviours.