Shao, Qijie
OSUM: Advancing Open Speech Understanding Models with Limited Resources in Academia
Geng, Xuelong, Wei, Kun, Shao, Qijie, Liu, Shuiyun, Lin, Zhennan, Zhao, Zhixian, Li, Guojian, Tian, Wenjie, Chen, Peikun, Li, Yangze, Guo, Pengcheng, Shao, Mingchen, Wang, Shuiyuan, Cao, Yuang, Wang, Chengyou, Xu, Tianyi, Dai, Yuhang, Zhu, Xinfa, Li, Yue, Zhang, Li, Xie, Lei
Large Language Models (LLMs) have made significant progress in various downstream tasks, inspiring the development of Speech Understanding Language Models (SULMs) to enable comprehensive speech-based interactions. However, most advanced SULMs are developed by the industry, leveraging large-scale datasets and computational resources that are not readily available to the academic community. Moreover, the lack of transparency in training details creates additional barriers to further innovation. In this study, we present OSUM, an Open Speech Understanding Model designed to explore the potential of training SLUMs under constrained academic resources. The OSUM model combines a Whisper encoder with a Qwen2 LLM and supports a wide range of speech tasks, including speech recognition (ASR), speech recognition with timestamps (SRWT), vocal event detection (VED), speech emotion recognition (SER), speaking style recognition (SSR), speaker gender classification (SGC), speaker age prediction (SAP), and speech-to-text chat (STTC). By employing an ASR+X training strategy, OSUM achieves efficient and stable multi-task training by simultaneously optimizing ASR alongside target tasks. Beyond delivering strong performance, OSUM emphasizes transparency by providing openly available data preparation and training methodologies, offering valuable insights and practical guidance for the academic community. By doing so, we aim to accelerate research and innovation in advanced SULM technologies.
DQ-Data2vec: Decoupling Quantization for Multilingual Speech Recognition
Shao, Qijie, Dong, Linhao, Wei, Kun, Sun, Sining, Xie, Lei
Data2vec is a self-supervised learning (SSL) approach that employs a teacher-student architecture for contextual representation learning via masked prediction, demonstrating remarkable performance in monolingual ASR. Previous studies have revealed that data2vec's shallow layers capture speaker and language information, middle layers encode phoneme and word features, while deep layers are responsible for reconstruction. Language and phoneme features are crucial for multilingual ASR. However, data2vec's masked representation generation relies on multi-layer averaging, inevitably coupling these features. To address this limitation, we propose a decoupling quantization based data2vec (DQ-Data2vec) for multilingual ASR, which includes a data2vec backbone and two improved online K-means quantizers. Our core idea is using the K-means quantizer with specified cluster numbers to decouple language and phoneme information for masked prediction. Specifically, in the language quantization, considering that the number of languages is significantly different from other irrelevant features (e.g., speakers), we assign the cluster number to match the number of languages, explicitly decoupling shallow layers' language-related information from irrelevant features. This strategy is also applied to decoupling middle layers' phoneme and word features. In a self-supervised scenario, experiments on the CommonVoice dataset demonstrate that DQ-Data2vec achieves a relative reduction of 9.51% in phoneme error rate (PER) and 11.58% in word error rate (WER) compared to data2vec and UniData2vec. Moreover, in a weakly-supervised scenario incorporating language labels and high-resource language text labels, the relative reduction is 18.09% and 1.55%, respectively.
SSHR: Leveraging Self-supervised Hierarchical Representations for Multilingual Automatic Speech Recognition
Xue, Hongfei, Shao, Qijie, Huang, Kaixun, Chen, Peikun, Xie, Lei, Liu, Jie
Multilingual automatic speech recognition (ASR) systems have garnered attention for their potential to extend language coverage globally. While self-supervised learning (SSL) has demonstrated its effectiveness in multilingual ASR, it is worth noting that the various layers' representations of SSL potentially contain distinct information that has not been fully leveraged. In this study, we propose a novel method that leverages self-supervised hierarchical representations (SSHR) to fine-tune multilingual ASR. We first analyze the different layers of the SSL model for language-related and content-related information, uncovering layers that show a stronger correlation. Then, we extract a language-related frame from correlated middle layers and guide specific content extraction through self-attention mechanisms. Additionally, we steer the model toward acquiring more content-related information in the final layers using our proposed Cross-CTC. We evaluate SSHR on two multilingual datasets, Common Voice and ML-SUPERB, and the experimental results demonstrate that our method achieves state-of-the-art performance to the best of our knowledge.
Auto-KWS 2021 Challenge: Task, Datasets, and Baselines
Wang, Jingsong, He, Yuxuan, Zhao, Chunyu, Shao, Qijie, Tu, Wei-Wei, Ko, Tom, Lee, Hung-yi, Xie, Lei
Auto-KWS 2021 challenge calls for automated machine learning (AutoML) solutions to automate the process of applying machine learning to a customized keyword spotting task. Compared with other keyword spotting tasks, Auto-KWS challenge has the following three characteristics: 1) The challenge focuses on the problem of customized keyword spotting, where the target device can only be awakened by an enrolled speaker with his specified keyword. The speaker can use any language and accent to define his keyword. 2) All dataset of the challenge is recorded in realistic environment. It is to simulate different user scenarios. 3) Auto-KWS is a "code competition", where participants need to submit AutoML solutions, then the platform automatically runs the enrollment and prediction steps with the submitted code.This challenge aims at promoting the development of a more personalized and flexible keyword spotting system. Two baseline systems are provided to all participants as references.