Goto

Collaborating Authors

 Shao, Ninglu


Lighter And Better: Towards Flexible Context Adaptation For Retrieval Augmented Generation

arXiv.org Artificial Intelligence

The existing Retrieval-Augmented Generation (RAG) systems face significant challenges in terms of cost and effectiveness. On one hand, they need to encode the lengthy retrieved contexts before responding to the input tasks, which imposes substantial computational overhead. On the other hand, directly using generic Large Language Models (LLMs) often leads to sub-optimal answers, while task-specific fine-tuning may compromise the LLMs' general capabilities. To address these challenges, we introduce a novel approach called FlexRAG (Flexible Context Adaptation for RAG). In this approach, the retrieved contexts are compressed into compact embeddings before being encoded by the LLMs. Simultaneously, these compressed embeddings are optimized to enhance downstream RAG performance. A key feature of FlexRAG is its flexibility, which enables effective support for diverse compression ratios and selective preservation of important contexts. Thanks to these technical designs, FlexRAG achieves superior generation quality while significantly reducing running costs. Comprehensive experiments on various question-answering datasets validate our approach as a cost-effective and flexible solution for RAG systems.


Compressing Lengthy Context With UltraGist

arXiv.org Artificial Intelligence

Compressing lengthy context is a critical but technically challenging problem. In this paper, we propose a new method called UltraGist, which is distinguished for its high-quality compression of lengthy context due to the innovative design of the compression and learning algorithm. UltraGist brings forth the following important benefits. Firstly, it notably contributes to the flexibility of compression, as it can be effectively learned to support a broad range of context lengths and compression ratios. Secondly, it helps to produce fine-grained compression for the lengthy context, where each small segment of the context is progressively processed on top of a tailored cross-attention mechanism. Thirdly, it makes the training process sample-efficient and thus maximizes the use of training data. Finally, it facilitates the efficient running of compression for dynamic context, as the compression result can be progressively generated and hence incrementally updated. UltraGist is evaluated on a wide variety of tasks associated with lengthy context, such as document QA and summarization, few-shot learning, multi-session conversation, et al. Whilst the existing methods fail to handle these challenging scenarios, our approach is able to preserve a near-lossless compression performance throughout all the evaluations.


Extending Llama-3's Context Ten-Fold Overnight

arXiv.org Artificial Intelligence

We extend the context length of Llama-3-8B-Instruct from 8K to 80K via QLoRA fine-tuning. The entire training cycle is super efficient, which takes 8 hours on one 8xA800 (80G) GPU machine. The resulted model exhibits superior performances across a broad range of evaluation tasks, such as NIHS, topic retrieval, and long-context language understanding; meanwhile, it also well preserves the original capability over short contexts. The dramatic context extension is mainly attributed to merely 3.5K synthetic training samples generated by GPT-4 , which indicates the LLMs' inherent (yet largely underestimated) potential to extend its original context length. In fact, the context length could be extended far beyond 80K with more computation resources. Therefore, the team will publicly release the entire resources (including data, model, data generation pipeline, training code) so as to facilitate the future research from the community: \url{https://github.com/FlagOpen/FlagEmbedding}.


Understanding Privacy Risks of Embeddings Induced by Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) show early signs of artificial general intelligence but struggle with hallucinations. One promising solution to mitigate these hallucinations is to store external knowledge as embeddings, aiding LLMs in retrieval-augmented generation. However, such a solution risks compromising privacy, as recent studies experimentally showed that the original text can be partially reconstructed from text embeddings by pre-trained language models. The significant advantage of LLMs over traditional pre-trained models may exacerbate these concerns. To this end, we investigate the effectiveness of reconstructing original knowledge and predicting entity attributes from these embeddings when LLMs are employed. Empirical findings indicate that LLMs significantly improve the accuracy of two evaluated tasks over those from pre-trained models, regardless of whether the texts are in-distribution or out-of-distribution. This underscores a heightened potential for LLMs to jeopardize user privacy, highlighting the negative consequences of their widespread use. We further discuss preliminary strategies to mitigate this risk.


Soaring from 4K to 400K: Extending LLM's Context with Activation Beacon

arXiv.org Artificial Intelligence

The utilization of long contexts poses a big challenge for LLMs due to their limited context window size. Although the context window can be extended through fine-tuning, it will result in a considerable cost at both training and inference time, and exert an unfavorable impact to the LLM's original capabilities. In this work, we propose a new method called Activation Beacon, which condenses LLM's raw activations into compact forms such that the LLM can perceive a longer context with a limited context window. Activation Beacon is introduced as a plug-in module, which fully preserves the LLM's original capability in short contexts. It works with the sliding window to streamingly process the long context, which leads to a competitive memory and time efficiency in both training and inference. Activation Beacon is trained with short-sequence data of diversified condensing ratios. Thanks to such a treatment, it can be effectively learned to support different context lengths with a small training cost. Our experiment verifies Activation Beacon's effectiveness of context extension: it can remarkably accomplish high-quality extension of Llama-2-7B's context by $\times100$ times (from 4K to 400K); meanwhile, it can also achieve superior performances across a variety of long-context language modeling and understanding tasks. The source code and model checkpoint are available at \url{https://github.com/FlagOpen/FlagEmbedding}.


Flexibly Scaling Large Language Models Contexts Through Extensible Tokenization

arXiv.org Artificial Intelligence

Large language models (LLMs) are in need of sufficient contexts to handle many critical applications, such as retrieval augmented generation and few-shot learning. However, due to the constrained window size, the LLMs can only access to the information within a limited context. Although the size of context window can be extended by fine-tuning, it will result in a substantial cost in both training and inference stage. In this paper, we present Extensible Tokenization as an alternative method which realizes the flexible scaling of LLMs' context. Extensible Tokenization stands as a midware in between of the tokenized context and the LLM, which transforms the raw token embeddings into the extensible embeddings. Such embeddings provide a more compact representation for the long context, on top of which the LLM is able to perceive more information with the same context window. Extensible Tokenization is also featured by its flexibility: the scaling factor can be flexibly determined within a feasible scope, leading to the extension of an arbitrary context length at the inference time. Besides, Extensible Tokenization is introduced as a drop-in component, which can be seamlessly plugged into not only the LLM itself and but also its fine-tuned derivatives, bringing in the extended contextual information while fully preserving the LLM's existing capabilities. We perform comprehensive experiments on long-context language modeling and understanding tasks, which verify Extensible Tokenization as an effective, efficient, flexible, and compatible method to extend LLM's context. Our model and source code will be made publicly available.


Reward Imputation with Sketching for Contextual Batched Bandits

arXiv.org Artificial Intelligence

Contextual batched bandit (CBB) is a setting where a batch of rewards is observed from the environment at the end of each episode, but the rewards of the non-executed actions are unobserved, resulting in partial-information feedback. Existing approaches for CBB often ignore the rewards of the non-executed actions, leading to underutilization of feedback information. In this paper, we propose an efficient approach called Sketched Policy Updating with Imputed Rewards (SPUIR) that completes the unobserved rewards using sketching, which approximates the full-information feedbacks. We formulate reward imputation as an imputation regularized ridge regression problem that captures the feedback mechanisms of both executed and non-executed actions. To reduce time complexity, we solve the regression problem using randomized sketching. We prove that our approach achieves an instantaneous regret with controllable bias and smaller variance than approaches without reward imputation. Furthermore, our approach enjoys a sublinear regret bound against the optimal policy. We also present two extensions, a rate-scheduled version and a version for nonlinear rewards, making our approach more practical. Experimental results show that SPUIR outperforms state-of-the-art baselines on synthetic, public benchmark, and real-world datasets.