Goto

Collaborating Authors

 Shang, Jingbo


Smaller Language Models are capable of selecting Instruction-Tuning Training Data for Larger Language Models

arXiv.org Artificial Intelligence

Instruction-tuning language models has become a crucial step in aligning them for general use. Typically, this process involves extensive training on large datasets, incurring high training costs. In this paper, we introduce a novel training data selection based on the learning percentage of the samples. We assert that current language models possess the capability to autonomously select high-quality training data, leading to comparable or improved performance compared to training on the entire dataset. Our experiments span different-sized models, revealing that this characteristic holds for models ranging from 1B (small) to 13B (large) in size. Moreover, we demonstrate an interesting finding that the data hardness transfers across model sizes, and a smaller 350M model can effectively curate high-quality training data with hard samples for a larger 13B model, resulting in an equally or superior instruction-tuned model compared to training on the complete dataset. Utilizing open-sourced OPT and Llama-2 models up to 13B in size, two publicly available instruction-tuning training datasets and evaluated by both automatic metrics & humans, our paper introduces a novel approach to training data selection, showcasing a more efficient alternative.


Answer is All You Need: Instruction-following Text Embedding via Answering the Question

arXiv.org Artificial Intelligence

This work aims to build a text embedder that can capture characteristics of texts specified by user instructions. Despite its tremendous potential to deploy user-oriented embeddings, none of previous approaches provides a concrete solution for it. This paper offers a new viewpoint, which treats the instruction as a question about the input text and encodes the expected answers to obtain the representation accordingly. Intuitively, texts with the same (implicit) semantics would share similar answers following the instruction, thus leading to more similar embeddings. Specifically, we propose InBedder that instantiates this embed-via-answering idea by only fine-tuning language models on abstractive question answering tasks. InBedder demonstrates significantly improved instruction-following capabilities according to our proposed instruction awareness tests and instruction robustness tests, when applied to both large language models (LLMs) (e.g., llama-2-7b) and smaller encoder-based LMs (e.g., roberta-large). Additionally, our qualitative analysis of clustering outcomes, achieved by applying different instructions to the same corpus, demonstrates a high degree of interpretability.


MEMORYLLM: Towards Self-Updatable Large Language Models

arXiv.org Artificial Intelligence

Existing Large Language Models (LLMs) usually remain static after deployment, which might make it hard to inject new knowledge into the model. We aim to build models containing a considerable portion of self-updatable parameters, enabling the model to integrate new knowledge effectively and efficiently. To this end, we introduce MEMORYLLM, a model that comprises a transformer and a fixed-size memory pool within the latent space of the transformer. MEMORYLLM can self-update with text knowledge and memorize the knowledge injected earlier. Our evaluations demonstrate the ability of MEMORYLLM to effectively incorporate new knowledge, as evidenced by its performance on model editing benchmarks. Meanwhile, the model exhibits long-term information retention capacity, which is validated through our custom-designed evaluations and long-context benchmarks. MEMORYLLM also shows operational integrity without any sign of performance degradation even after nearly a million memory updates.


Large Language Models for Time Series: A Survey

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have seen significant use in domains such as natural language processing and computer vision. Going beyond text, image and graphics, LLMs present a significant potential for analysis of time series data, benefiting domains such as climate, IoT, healthcare, traffic, audio and finance. This survey paper provides an in-depth exploration and a detailed taxonomy of the various methodologies employed to harness the power of LLMs for time series analysis. We address the inherent challenge of bridging the gap between LLMs' original text data training and the numerical nature of time series data, and explore strategies for transferring and distilling knowledge from LLMs to numerical time series analysis. We detail various methodologies, including (1) direct prompting of LLMs, (2) time series quantization, (3) alignment techniques, (4) utilization of the vision modality as a bridging mechanism, and (5) the combination of LLMs with tools. Additionally, this survey offers a comprehensive overview of the existing multimodal time series and text datasets and delves into the challenges and future opportunities of this emerging field. We maintain an up-to-date Github repository which includes all the papers and datasets discussed in the survey.


Learning a Decision Tree Algorithm with Transformers

arXiv.org Artificial Intelligence

Decision trees are renowned for their interpretability capability to achieve high predictive performance, especially on tabular data. Traditionally, they are constructed through recursive algorithms, where they partition the data at every node in a tree. However, identifying the best partition is challenging, as decision trees optimized for local segments may not bring global generalization. To address this, we introduce MetaTree, which trains a transformer-based model on filtered outputs from classical algorithms to produce strong decision trees for classification. Specifically, we fit both greedy decision trees and optimized decision trees on a large number of datasets. We then train MetaTree to produce the trees that achieve strong generalization performance. This training enables MetaTree to not only emulate these algorithms, but also to intelligently adapt its strategy according to the context, thereby achieving superior generalization performance.


Multi-step Problem Solving Through a Verifier: An Empirical Analysis on Model-induced Process Supervision

arXiv.org Artificial Intelligence

Process supervision, using a trained verifier to evaluate the intermediate steps generated by reasoner, has demonstrated significant improvements in multi-step problem solving. In this paper, to avoid expensive human annotation effort on the verifier training data, we introduce Model-induced Process Supervision (MiPS), a novel method for automating data curation. MiPS annotates an intermediate step by sampling completions of this solution through the reasoning model, and obtaining an accuracy defined as the proportion of correct completions. Errors in the reasoner would cause MiPS to underestimate the accuracy of intermediate steps, therefore, we suggest and empirically show that verification focusing on high predicted scores of the verifier shall be preferred over that of low predicted scores, contrary to prior work. Our approach significantly improves the performance of PaLM 2 on math and coding tasks (accuracy +0.67% on GSM8K, +4.16% on MATH, +0.92% on MBPP compared with an output supervision trained verifier). Additionally, our study demonstrates that the verifier exhibits strong generalization ability across different reasoning models.


MedLM: Exploring Language Models for Medical Question Answering Systems

arXiv.org Artificial Intelligence

In the face of rapidly expanding online medical literature, automated systems for aggregating and summarizing information are becoming increasingly crucial for healthcare professionals and patients. Large Language Models (LLMs), with their advanced generative capabilities, have shown promise in various NLP tasks, and their potential in the healthcare domain, particularly for Closed-Book Generative QnA, is significant. However, the performance of these models in domain-specific tasks such as medical Q&A remains largely unexplored. This study aims to fill this gap by comparing the performance of general and medical-specific distilled LMs for medical Q&A. We aim to evaluate the effectiveness of fine-tuning domain-specific LMs and compare the performance of different families of Language Models. The study will address critical questions about these models' reliability, comparative performance, and effectiveness in the context of medical Q&A. The findings will provide valuable insights into the suitability of different LMs for specific applications in the medical domain.


Chain-of-Table: Evolving Tables in the Reasoning Chain for Table Understanding

arXiv.org Artificial Intelligence

Table-based reasoning with large language models (LLMs) is a promising direction to tackle many table understanding tasks, such as table-based question answering and fact verification. Compared with generic reasoning, table-based reasoning requires the extraction of underlying semantics from both free-form questions and semi-structured tabular data. Chain-of-Thought and its similar approaches incorporate the reasoning chain in the form of textual context, but it is still an open question how to effectively leverage tabular data in the reasoning chain. Specifically, we guide LLMs using in-context learning to iteratively generate operations and update the table to represent a tabular reasoning chain. LLMs can therefore dynamically plan the next operation based on the results of the previous ones. This continuous evolution of the table forms a chain, showing the reasoning process for a given tabular problem. The chain carries structured information of the intermediate results, enabling more accurate and reliable predictions. Tables are a popular data format and widely used in daily life (Cafarella et al., 2008). Understanding tabular data with language models can benefit various downstream tasks, such as table-based fact verification (Chen et al., 2019), and table-based question answering (Jin et al., 2022). Distinct from pure text, tables deliver rich information through the interaction between rows and columns in the tabular structure, which enhances the data capacity but also increases the difficulty for language models to understand them. Thus, reasoning over the tabular data is an important direction in natural language processing and attracts increasing attention from both academia and industry. In recent years, several approaches have been suggested to tackle the problem of table understanding by training language models. One common direction is to add specialized embedding layers or attention mechanisms into language models and pre-train the models by recovering table cells or segments (Herzig et al., 2020; Wang et al., 2021; Gu et al., 2022; Andrejczuk et al., 2022).


OMNIINPUT: A Model-centric Evaluation Framework through Output Distribution

arXiv.org Artificial Intelligence

We propose a novel model-centric evaluation framework, OmniInput, to evaluate the quality of an AI/ML model's predictions on all possible inputs (including human-unrecognizable ones), which is crucial for AI safety and reliability. Unlike traditional data-centric evaluation based on pre-defined test sets, the test set in OmniInput is self-constructed by the model itself and the model quality is evaluated by investigating its output distribution. We employ an efficient sampler to obtain representative inputs and the output distribution of the trained model, which, after selective annotation, can be used to estimate the model's precision and recall at different output values and a comprehensive precision-recall curve. Our experiments demonstrate that OmniInput enables a more fine-grained comparison between models, especially when their performance is almost the same on pre-defined datasets, leading to new findings and insights for how to train more robust, generalizable models.


WOT-Class: Weakly Supervised Open-world Text Classification

arXiv.org Artificial Intelligence

State-of-the-art weakly supervised text classification methods, while significantly reduced the required human supervision, still requires the supervision to cover all the classes of interest. This is never easy to meet in practice when human explore new, large corpora without complete pictures. In this paper, we work on a novel yet important problem of weakly supervised open-world text classification, where supervision is only needed for a few examples from a few known classes and the machine should handle both known and unknown classes in test time. General open-world classification has been studied mostly using image classification; however, existing methods typically assume the availability of sufficient known-class supervision and strong unknown-class prior knowledge (e.g., the number and/or data distribution). We propose a novel framework WOT-Class that lifts those strong assumptions. Specifically, it follows an iterative process of (a) clustering text to new classes, (b) mining and ranking indicative words for each class, and (c) merging redundant classes by using the overlapped indicative words as a bridge. Extensive experiments on 7 popular text classification datasets demonstrate that WOT-Class outperforms strong baselines consistently with a large margin, attaining 23.33% greater average absolute macro-F1 over existing approaches across all datasets. Such competent accuracy illuminates the practical potential of further reducing human effort for text classification.