Goto

Collaborating Authors

 Shan, Ying


DOGE: Towards Versatile Visual Document Grounding and Referring

arXiv.org Artificial Intelligence

In recent years, Multimodal Large Language Models (MLLMs) have increasingly emphasized grounding and referring capabilities to achieve detailed understanding and flexible user interaction. However, in the realm of visual document understanding, these capabilities lag behind due to the scarcity of fine-grained datasets and comprehensive benchmarks. To fill this gap, we propose the DOcument Grounding and Eferring data engine (DOGE-Engine), which produces two types of high-quality fine-grained document data: multi-granular parsing data for enhancing fundamental text localization and recognition capabilities; and instruction-tuning data to activate MLLM's grounding and referring capabilities during dialogue and reasoning. Additionally, using our engine, we construct DOGE-Bench, which encompasses 7 grounding and referring tasks across 3 document types (chart, poster, PDF document), providing comprehensive evaluations for fine-grained document understanding. Furthermore, leveraging the data generated by our engine, we develop a strong baseline model, DOGE. This pioneering MLLM is capable of accurately referring and grounding texts at multiple granularities within document images. Our code, data, and model will be open-sourced for community development.


mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA

arXiv.org Artificial Intelligence

Advanced Multimodal Large Language Models (MLLMs) struggle with recent Knowledge-based VQA tasks, such as INFOSEEK and Encyclopedic-VQA, due to their limited and frozen knowledge scope, often leading to ambiguous and inaccurate responses. Thus, multimodal Retrieval-Augmented Generation (mRAG) is naturally introduced to provide MLLMs with comprehensive and up-to-date knowledge, effectively expanding the knowledge scope. However, current mRAG methods have inherent drawbacks, including: 1) Performing retrieval even when external knowledge is not needed. 2) Lacking of identification of evidence that supports the query. 3) Increasing model complexity due to additional information filtering modules or rules. To address these shortcomings, we propose a novel generalized framework called \textbf{m}ultimodal \textbf{R}etrieval-\textbf{R}eflection-\textbf{A}ugmented \textbf{G}eneration (mR$^2$AG), which achieves adaptive retrieval and useful information localization to enable answers through two easy-to-implement reflection operations, preventing high model complexity. In mR$^2$AG, Retrieval-Reflection is designed to distinguish different user queries and avoids redundant retrieval calls, and Relevance-Reflection is introduced to guide the MLLM in locating beneficial evidence of the retrieved content and generating answers accordingly. In addition, mR$^2$AG can be integrated into any well-trained MLLM with efficient fine-tuning on the proposed mR$^2$AG Instruction-Tuning dataset (mR$^2$AG-IT). mR$^2$AG significantly outperforms state-of-the-art MLLMs (e.g., GPT-4v/o) and RAG-based MLLMs on INFOSEEK and Encyclopedic-VQA, while maintaining the exceptional capabilities of base MLLMs across a wide range of Visual-dependent tasks.


Image Conductor: Precision Control for Interactive Video Synthesis

arXiv.org Artificial Intelligence

Filmmaking and animation production often require sophisticated techniques for coordinating camera transitions and object movements, typically involving labor-intensive real-world capturing. Despite advancements in generative AI for video creation, achieving precise control over motion for interactive video asset generation remains challenging. To this end, we propose Image Conductor, a method for precise control of camera transitions and object movements to generate video assets from a single image. An well-cultivated training strategy is proposed to separate distinct camera and object motion by camera LoRA weights and object LoRA weights. To further address cinematographic variations from ill-posed trajectories, we introduce a camera-free guidance technique during inference, enhancing object movements while eliminating camera transitions. Additionally, we develop a trajectory-oriented video motion data curation pipeline for training. Quantitative and qualitative experiments demonstrate our method's precision and fine-grained control in generating motion-controllable videos from images, advancing the practical application of interactive video synthesis. Project webpage available at https://liyaowei-stu.github.io/project/ImageConductor/


GrootVL: Tree Topology is All You Need in State Space Model

arXiv.org Artificial Intelligence

The state space models, employing recursively propagated features, demonstrate strong representation capabilities comparable to Transformer models and superior efficiency. However, constrained by the inherent geometric constraints of sequences, it still falls short in modeling long-range dependencies. To address this issue, we propose the GrootVL network, which first dynamically generates a tree topology based on spatial relationships and input features. Then, feature propagation is performed based on this graph, thereby breaking the original sequence constraints to achieve stronger representation capabilities. Additionally, we introduce a linear complexity dynamic programming algorithm to enhance long-range interactions without increasing computational cost. GrootVL is a versatile multimodal framework that can be applied to both visual and textual tasks. Extensive experiments demonstrate that our method significantly outperforms existing structured state space models on image classification, object detection and segmentation. Besides, by fine-tuning large language models, our approach achieves consistent improvements in multiple textual tasks at minor training cost.


CV-VAE: A Compatible Video VAE for Latent Generative Video Models

arXiv.org Artificial Intelligence

Spatio-temporal compression of videos, utilizing networks such as Variational Autoencoders (VAE), plays a crucial role in OpenAI's SORA and numerous other video generative models. For instance, many LLM-like video models learn the distribution of discrete tokens derived from 3D VAEs within the VQVAE framework, while most diffusion-based video models capture the distribution of continuous latent extracted by 2D VAEs without quantization. The temporal compression is simply realized by uniform frame sampling which results in unsmooth motion between consecutive frames. Currently, there lacks of a commonly used continuous video (3D) VAE for latent diffusion-based video models in the research community. Moreover, since current diffusion-based approaches are often implemented using pre-trained text-to-image (T2I) models, directly training a video VAE without considering the compatibility with existing T2I models will result in a latent space gap between them, which will take huge computational resources for training to bridge the gap even with the T2I models as initialization. To address this issue, we propose a method for training a video VAE of latent video models, namely CV-VAE, whose latent space is compatible with that of a given image VAE, e.g., image VAE of Stable Diffusion (SD). The compatibility is achieved by the proposed novel latent space regularization, which involves formulating a regularization loss using the image VAE. Benefiting from the latent space compatibility, video models can be trained seamlessly from pre-trained T2I or video models in a truly spatio-temporally compressed latent space, rather than simply sampling video frames at equal intervals. With our CV-VAE, existing video models can generate four times more frames with minimal finetuning. Extensive experiments are conducted to demonstrate the effectiveness of the proposed video VAE.


Plot2Code: A Comprehensive Benchmark for Evaluating Multi-modal Large Language Models in Code Generation from Scientific Plots

arXiv.org Artificial Intelligence

The remarkable progress of Multi-modal Large Language Models (MLLMs) has attracted significant attention due to their superior performance in visual contexts. However, their capabilities in turning visual figure to executable code, have not been evaluated thoroughly. To address this, we introduce Plot2Code, a comprehensive visual coding benchmark designed for a fair and in-depth assessment of MLLMs. We carefully collect 132 manually selected high-quality matplotlib plots across six plot types from publicly available matplotlib galleries. For each plot, we carefully offer its source code, and an descriptive instruction summarized by GPT-4. This approach enables Plot2Code to extensively evaluate MLLMs' code capabilities across various input modalities. Furthermore, we propose three automatic evaluation metrics, including code pass rate, text-match ratio, and GPT-4V overall rating, for a fine-grained assessment of the output code and rendered images. Instead of simply judging pass or fail, we employ GPT-4V to make an overall judgement between the generated and reference images, which has been shown to be consistent with human evaluation. The evaluation results, which include analyses of 14 MLLMs such as the proprietary GPT-4V, Gemini-Pro, and the open-sourced Mini-Gemini, highlight the substantial challenges presented by Plot2Code. With Plot2Code, we reveal that most existing MLLMs struggle with visual coding for text-dense plots, heavily relying on textual instruction. We hope that the evaluation results from Plot2Code on visual coding will guide the future development of MLLMs. All data involved with Plot2Code are available at https://huggingface.co/datasets/TencentARC/Plot2Code.


HRLAIF: Improvements in Helpfulness and Harmlessness in Open-domain Reinforcement Learning From AI Feedback

arXiv.org Artificial Intelligence

Reinforcement Learning from AI Feedback (RLAIF) has the advantages of shorter annotation cycles and lower costs over Reinforcement Learning from Human Feedback (RLHF), making it highly efficient during the rapid strategy iteration periods of large language model (LLM) training. Using ChatGPT as a labeler to provide feedback on open-domain prompts in RLAIF training, we observe an increase in human evaluators' preference win ratio for model responses, but a decrease in evaluators' satisfaction rate. Analysis suggests that the decrease in satisfaction rate is mainly due to some responses becoming less helpful, particularly in terms of correctness and truthfulness, highlighting practical limitations of basic RLAIF. In this paper, we propose Hybrid Reinforcement Learning from AI Feedback (HRLAIF). This method enhances the accuracy of AI annotations for responses, making the model's helpfulness more robust in training process. Additionally, it employs AI for Red Teaming, further improving the model's harmlessness. Human evaluation results show that HRLAIF inherits the ability of RLAIF to enhance human preference for outcomes at a low cost while also improving the satisfaction rate of responses. Compared to the policy model before Reinforcement Learning (RL), it achieves an increase of 2.08\% in satisfaction rate, effectively addressing the issue of a decrease of 4.58\% in satisfaction rate after basic RLAIF.


DiffEditor: Boosting Accuracy and Flexibility on Diffusion-based Image Editing

arXiv.org Artificial Intelligence

Large-scale Text-to-Image (T2I) diffusion models have revolutionized image generation over the last few years. Although owning diverse and high-quality generation capabilities, translating these abilities to fine-grained image editing remains challenging. In this paper, we propose DiffEditor to rectify two weaknesses in existing diffusion-based image editing: (1) in complex scenarios, editing results often lack editing accuracy and exhibit unexpected artifacts; (2) lack of flexibility to harmonize editing operations, e.g., imagine new content. In our solution, we introduce image prompts in fine-grained image editing, cooperating with the text prompt to better describe the editing content. To increase the flexibility while maintaining content consistency, we locally combine stochastic differential equation (SDE) into the ordinary differential equation (ODE) sampling. In addition, we incorporate regional score-based gradient guidance and a time travel strategy into the diffusion sampling, further improving the editing quality. Extensive experiments demonstrate that our method can efficiently achieve state-of-the-art performance on various fine-grained image editing tasks, including editing within a single image (e.g., object moving, resizing, and content dragging) and across images (e.g., appearance replacing and object pasting). Our source code is released at https://github.com/MC-E/DragonDiffusion.


RecDCL: Dual Contrastive Learning for Recommendation

arXiv.org Artificial Intelligence

Self-supervised recommendation (SSR) has achieved great success in mining the potential interacted behaviors for collaborative filtering in recent years. As a major branch, Contrastive Learning (CL) based SSR conquers data sparsity in Web platforms by contrasting the embedding between raw data and augmented data. However, existing CL-based SSR methods mostly focus on contrasting in a batch-wise way, failing to exploit potential regularity in the feature-wise dimension, leading to redundant solutions during the representation learning process of users (items) from Websites. Furthermore, the joint benefits of utilizing both Batch-wise CL (BCL) and Feature-wise CL (FCL) for recommendations remain underexplored. To address these issues, we investigate the relationship of objectives between BCL and FCL. Our study suggests a cooperative benefit of employing both methods, as evidenced from theoretical and experimental perspectives. Based on these insights, we propose a dual CL method for recommendation, referred to as RecDCL. RecDCL first eliminates redundant solutions on user-item positive pairs in a feature-wise manner. It then optimizes the uniform distributions within users and items using a polynomial kernel from an FCL perspective. Finally, it generates contrastive embedding on output vectors in a batch-wise objective. We conduct experiments on four widely-used benchmarks and an industrial dataset. The results consistently demonstrate that the proposed RecDCL outperforms the state-of-the-art GNNs-based and SSL-based models (with up to a 5.65\% improvement in terms of Recall@20), thereby confirming the effectiveness of the joint-wise objective. All source codes used in this paper are publicly available at \url{https://github.com/THUDM/RecDCL}}.


Multimodal Pathway: Improve Transformers with Irrelevant Data from Other Modalities

arXiv.org Artificial Intelligence

We propose to improve transformers of a specific modality with irrelevant data from other modalities, e.g., improve an ImageNet model with audio or point cloud datasets. We would like to highlight that the data samples of the target modality are irrelevant to the other modalities, which distinguishes our method from other works utilizing paired (e.g., CLIP) or interleaved data of different modalities. We propose a methodology named Multimodal Pathway - given a target modality and a transformer designed for it, we use an auxiliary transformer trained with data of another modality and construct pathways to connect components of the two models so that data of the target modality can be processed by both models. In this way, we utilize the universal sequence-to-sequence modeling abilities of transformers obtained from two modalities. As a concrete implementation, we use a modality-specific tokenizer and task-specific head as usual but utilize the transformer blocks of the auxiliary model via a proposed method named Cross-Modal Re-parameterization, which exploits the auxiliary weights without any inference costs. On the image, point cloud, video, and audio recognition tasks, we observe significant and consistent performance improvements with irrelevant data from other modalities. The code and models are available at https://github.com/AILab-CVC/M2PT.