Goto

Collaborating Authors

 Shan, Rong


Full-Stack Optimized Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation

arXiv.org Artificial Intelligence

In this paper, we address the lifelong sequential behavior incomprehension problem in large language models (LLMs) for recommendation, where LLMs struggle to extract useful information from long user behavior sequences, even within their context limits. To tackle this, we propose ReLLaX (Retrieval-enhanced Large Language models Plus), a framework offering optimization across data, prompt, and parameter levels. At the data level, we introduce Semantic User Behavior Retrieval (SUBR) to reduce sequence heterogeneity, making it easier for LLMs to extract key information. For prompt-level enhancement, we employ Soft Prompt Augmentation (SPA) to inject collaborative knowledge, aligning item representations with recommendation tasks and improving LLMs's exploration of item relationships. Finally, at the parameter level, we propose Component Fully-interactive LoRA (CFLoRA), which enhances LoRA's expressiveness by enabling interactions between its components, allowing better capture of sequential information. Moreover, we present new perspectives to compare current LoRA-based LLM4Rec methods, i.e. from both a composite and a decomposed view. We theoretically demonstrate that the ways they employ LoRA for recommendation are degraded versions of our CFLoRA, with different constraints on atom component interactions. Extensive experiments on three public datasets demonstrate ReLLaX's superiority over existing baselines and its ability to mitigate lifelong sequential behavior incomprehension effectively.


An Automatic Graph Construction Framework based on Large Language Models for Recommendation

arXiv.org Artificial Intelligence

Graph neural networks (GNNs) have emerged as state-of-the-art methods to learn from graph-structured data for recommendation. However, most existing GNN-based recommendation methods focus on the optimization of model structures and learning strategies based on pre-defined graphs, neglecting the importance of the graph construction stage. Earlier works for graph construction usually rely on speciffic rules or crowdsourcing, which are either too simplistic or too labor-intensive. Recent works start to utilize large language models (LLMs) to automate the graph construction, in view of their abundant open-world knowledge and remarkable reasoning capabilities. Nevertheless, they generally suffer from two limitations: (1) invisibility of global view (e.g., overlooking contextual information) and (2) construction inefficiency. To this end, we introduce AutoGraph, an automatic graph construction framework based on LLMs for recommendation. Specifically, we first use LLMs to infer the user preference and item knowledge, which is encoded as semantic vectors. Next, we employ vector quantization to extract the latent factors from the semantic vectors. The latent factors are then incorporated as extra nodes to link the user/item nodes, resulting in a graph with in-depth global-view semantics. We further design metapath-based message aggregation to effectively aggregate the semantic and collaborative information. The framework is model-agnostic and compatible with different backbone models. Extensive experiments on three real-world datasets demonstrate the efficacy and efffciency of AutoGraph compared to existing baseline methods. We have deployed AutoGraph in Huawei advertising platform, and gain a 2.69% improvement on RPM and a 7.31% improvement on eCPM in the online A/B test. Currently AutoGraph has been used as the main trafffc model, serving hundreds of millions of people.


Large Language Models Make Sample-Efficient Recommender Systems

arXiv.org Artificial Intelligence

Large language models (LLMs) have achieved remarkable progress in the field of natural language processing (NLP), demonstrating remarkable abilities in producing text that resembles human language for various tasks. This opens up new opportunities for employing them in recommender systems (RSs). In this paper, we specifically examine the sample efficiency of LLM-enhanced recommender systems, which pertains to the model's capacity to attain superior performance with a limited quantity of training data. Conventional recommendation models (CRMs) often need a large amount of training data because of the sparsity of features and interactions. Hence, we propose and verify our core viewpoint: Large Language Models Make Sample-Efficient Recommender Systems. We propose a simple yet effective framework (i.e., Laser) to validate the viewpoint from two aspects: (1) LLMs themselves are sample-efficient recommenders; and (2) LLMs, as feature generators and encoders, make CRMs more sample-efficient. Extensive experiments on two public datasets show that Laser requires only a small fraction of training samples to match or even surpass CRMs that are trained on the entire training set, demonstrating superior sample efficiency.


ReLLa: Retrieval-enhanced Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation

arXiv.org Artificial Intelligence

With large language models (LLMs) achieving remarkable breakthroughs in natural language processing (NLP) domains, LLM-enhanced recommender systems have received much attention and have been actively explored currently. In this paper, we focus on adapting and empowering a pure large language model for zero-shot and few-shot recommendation tasks. First and foremost, we identify and formulate the lifelong sequential behavior incomprehension problem for LLMs in recommendation domains, i.e., LLMs fail to extract useful information from a textual context of long user behavior sequence, even if the length of context is far from reaching the context limitation of LLMs. To address such an issue and improve the recommendation performance of LLMs, we propose a novel framework, namely Retrieval-enhanced Large Language models (ReLLa) for recommendation tasks in both zero-shot and few-shot settings. For zero-shot recommendation, we perform semantic user behavior retrieval (SUBR) to improve the data quality of testing samples, which greatly reduces the difficulty for LLMs to extract the essential knowledge from user behavior sequences. As for few-shot recommendation, we further design retrieval-enhanced instruction tuning (ReiT) by adopting SUBR as a data augmentation technique for training samples. Specifically, we develop a mixed training dataset consisting of both the original data samples and their retrieval-enhanced counterparts. We conduct extensive experiments on three real-world public datasets to demonstrate the superiority of ReLLa compared with existing baseline models, as well as its capability for lifelong sequential behavior comprehension. To be highlighted, with only less than 10% training samples, few-shot ReLLa can outperform traditional CTR models that are trained on the entire training set (e.g., DCNv2, DIN, SIM).