Shan, Mao
Performance Assessment of Lidar Odometry Frameworks: A Case Study at the Australian Botanic Garden Mount Annan
Ouazghire, Mohamed Mourad, Berrio, Julie Stephany, Shan, Mao, Worrall, Stewart
Autonomous vehicles are being tested in diverse environments worldwide. However, a notable gap exists in evaluating datasets representing natural, unstructured environments such as forests or gardens. To address this, we present a study on localisation at the Australian Botanic Garden Mount Annan. This area encompasses open grassy areas, paved pathways, and densely vegetated sections with trees and other objects. The dataset was recorded using a 128-beam LiDAR sensor and GPS and IMU readings to track the ego-vehicle. This paper evaluates the performance of two state-of-the-art LiDARinertial odometry frameworks, COIN-LIO and LIO-SAM, on this dataset. We analyse trajectory estimates in both horizontal and vertical dimensions and assess relative translation and yaw errors over varying distances. Our findings reveal that while both frameworks perform adequately in the vertical plane, COINLIO demonstrates superior accuracy in the horizontal plane, particularly over extended trajectories. In contrast, LIO-SAM shows increased drift and yaw errors over longer distances.
OccFusion: Multi-Sensor Fusion Framework for 3D Semantic Occupancy Prediction
Ming, Zhenxing, Berrio, Julie Stephany, Shan, Mao, Worrall, Stewart
A comprehensive understanding of 3D scenes is crucial in autonomous vehicles (AVs), and recent models for 3D semantic occupancy prediction have successfully addressed the challenge of describing real-world objects with varied shapes and classes. However, existing methods for 3D occupancy prediction heavily rely on surround-view camera images, making them susceptible to changes in lighting and weather conditions. This paper introduces OccFusion, a novel sensor fusion framework for predicting 3D occupancy. By integrating features from additional sensors, such as lidar and surround view radars, our framework enhances the accuracy and robustness of occupancy prediction, resulting in top-tier performance on the nuScenes benchmark. Furthermore, extensive experiments conducted on the nuScenes and semanticKITTI dataset, including challenging night and rainy scenarios, confirm the superior performance of our sensor fusion strategy across various perception ranges. The code for this framework will be made available at https://github.com/DanielMing123/OccFusion.
InverseMatrixVT3D: An Efficient Projection Matrix-Based Approach for 3D Occupancy Prediction
Ming, Zhenxing, Berrio, Julie Stephany, Shan, Mao, Worrall, Stewart
This paper introduces InverseMatrixVT3D, an efficient method for transforming multi-view image features into 3D feature volumes for 3D semantic occupancy prediction. Existing methods for constructing 3D volumes often rely on depth estimation, device-specific operators, or transformer queries, which hinders the widespread adoption of 3D occupancy models. In contrast, our approach leverages two projection matrices to store the static mapping relationships and matrix multiplications to efficiently generate global Bird's Eye View (BEV) features and local 3D feature volumes. Specifically, we achieve this by performing matrix multiplications between multi-view image feature maps and two sparse projection matrices. We introduce a sparse matrix handling technique for the projection matrices to optimise GPU memory usage. Moreover, a global-local attention fusion module is proposed to integrate the global BEV features with the local 3D feature volumes to obtain the final 3D volume. We also employ a multi-scale supervision mechanism to further enhance performance. Comprehensive experiments on the nuScenes dataset demonstrate the simplicity and effectiveness of our method. The code will be made available at:https://github.com/DanielMing123/InverseMatrixVT3D
Classification of Safety Driver Attention During Autonomous Vehicle Operation
Konrad, Santiago Gerling, Berrio, Julie Stephany, Shan, Mao, Masson, Favio, Worrall, Stewart
Despite the continual advances in Advanced Driver Assistance Systems (ADAS) and the development of high-level autonomous vehicles (AV), there is a general consensus that for the short to medium term, there is a requirement for a human supervisor to handle the edge cases that inevitably arise. Given this requirement, it is essential that the state of the vehicle operator is monitored to ensure they are contributing to the vehicle's safe operation. This paper introduces a dual-source approach integrating data from an infrared camera facing the vehicle operator and vehicle perception systems to produce a metric for driver alertness in order to promote and ensure safe operator behaviour. The infrared camera detects the driver's head, enabling the calculation of head orientation, which is relevant as the head typically moves according to the individual's focus of attention. By incorporating environmental data from the perception system, it becomes possible to determine whether the vehicle operator observes objects in the surroundings. Experiments were conducted using data collected in Sydney, Australia, simulating AV operations in an urban environment. Our results demonstrate that the proposed system effectively determines a metric for the attention levels of the vehicle operator, enabling interventions such as warnings or reducing autonomous functionality as appropriate. This comprehensive solution shows promise in contributing to ADAS and AVs' overall safety and efficiency in a real-world setting.
Practical Collaborative Perception: A Framework for Asynchronous and Multi-Agent 3D Object Detection
Dao, Minh-Quan, Berrio, Julie Stephany, Frรฉmont, Vincent, Shan, Mao, Hรฉry, Elwan, Worrall, Stewart
Occlusion is a major challenge for LiDAR-based object detection methods. This challenge becomes safety-critical in urban traffic where the ego vehicle must have reliable object detection to avoid collision while its field of view is severely reduced due to the obstruction posed by a large number of road users. Collaborative perception via Vehicle-to-Everything (V2X) communication, which leverages the diverse perspective thanks to the presence at multiple locations of connected agents to form a complete scene representation, is an appealing solution. State-of-the-art V2X methods resolve the performance-bandwidth tradeoff using a mid-collaboration approach where the Bird-Eye View images of point clouds are exchanged so that the bandwidth consumption is lower than communicating point clouds as in early collaboration, and the detection performance is higher than late collaboration, which fuses agents' output, thanks to a deeper interaction among connected agents. While achieving strong performance, the real-world deployment of most mid-collaboration approaches is hindered by their overly complicated architectures, involving learnable collaboration graphs and autoencoder-based compressor/ decompressor, and unrealistic assumptions about inter-agent synchronization. In this work, we devise a simple yet effective collaboration method that achieves a better bandwidth-performance tradeoff than prior state-of-the-art methods while minimizing changes made to the single-vehicle detection models and relaxing unrealistic assumptions on inter-agent synchronization. Experiments on the V2X-Sim dataset show that our collaboration method achieves 98\% of the performance of an early-collaboration method, while only consuming the equivalent bandwidth of a late-collaboration method.
LightFormer: An End-to-End Model for Intersection Right-of-Way Recognition Using Traffic Light Signals and an Attention Mechanism
Ming, Zhenxing, Berrio, Julie Stephany, Shan, Mao, Nebot, Eduardo, Worrall, Stewart
For smart vehicles driving through signalised intersections, it is crucial to determine whether the vehicle has right of way given the state of the traffic lights. To address this issue, camera based sensors can be used to determine whether the vehicle has permission to proceed straight, turn left or turn right. This paper proposes a novel end to end intersection right of way recognition model called LightFormer to generate right of way status for available driving directions in complex urban intersections. The model includes a spatial temporal inner structure with an attention mechanism, which incorporates features from past image to contribute to the classification of the current frame right of way status. In addition, a modified, multi weight arcface loss is introduced to enhance the model classification performance. Finally, the proposed LightFormer is trained and tested on two public traffic light datasets with manually augmented labels to demonstrate its effectiveness.