Shallue, Christopher J.
A Large Batch Optimizer Reality Check: Traditional, Generic Optimizers Suffice Across Batch Sizes
Nado, Zachary, Gilmer, Justin M., Shallue, Christopher J., Anil, Rohan, Dahl, George E.
Recently the LARS and LAMB optimizers have been proposed for training neural networks faster using large batch sizes. LARS and LAMB add layer-wise normalization to the update rules of Heavy-ball momentum and Adam, respectively, and have become popular in prominent benchmarks and deep learning libraries. However, without fair comparisons to standard optimizers, it remains an open question whether LARS and LAMB have any benefit over traditional, generic algorithms. In this work we demonstrate that standard optimization algorithms such as Nesterov momentum and Adam can match or exceed the results of LARS and LAMB at large batch sizes. Our results establish new, stronger baselines for future comparisons at these batch sizes and shed light on the difficulties of comparing optimizers for neural network training more generally.
On Empirical Comparisons of Optimizers for Deep Learning
Choi, Dami, Shallue, Christopher J., Nado, Zachary, Lee, Jaehoon, Maddison, Chris J., Dahl, George E.
Selecting an optimizer is a central step in the contemporary deep learning pipeline. In this paper, we demonstrate the sensitivity of optimizer comparisons to the metaparameter tuning protocol. Our findings suggest that the metaparameter search space may be the single most important factor explaining the rankings obtained by recent empirical comparisons in the literature. In fact, we show that these results can be contradicted when metaparameter search spaces are changed. As tuning effort grows without bound, more general optimizers should never underperform the ones they can approximate (i.e., Adam should never perform worse than momentum), but recent attempts to compare optimizers either assume these inclusion relationships are not practically relevant or restrict the metaparameters in ways that break the inclusions. In our experiments, we find that inclusion relationships between optimizers matter in practice and always predict optimizer comparisons. In particular, we find that the popular adaptive gradient methods never underperform momentum or gradient descent. We also report practical tips around tuning often ignored metaparameters of adaptive gradient methods and raise concerns about fairly benchmarking optimizers for neural network training.
Which Algorithmic Choices Matter at Which Batch Sizes? Insights From a Noisy Quadratic Model
Zhang, Guodong, Li, Lala, Nado, Zachary, Martens, James, Sachdeva, Sushant, Dahl, George E., Shallue, Christopher J., Grosse, Roger
Increasing the batch size is a popular way to speed up neural network training, but beyond some critical batch size, larger batch sizes yield diminishing returns. In this work, we study how the critical batch size changes based on properties of the optimization algorithm, including acceleration and preconditioning, through two different lenses: large scale experiments, and analysis of a simple noisy quadratic model (NQM). We experimentally demonstrate that optimization algorithms that employ preconditioning, specifically Adam and K-FAC, result in much larger critical batch sizes than stochastic gradient descent with momentum. We also demonstrate that the NQM captures many of the essential features of real neural network training, despite being drastically simpler to work with. The NQM predicts our results with preconditioned optimizers, previous results with accelerated gradient descent, and other results around optimal learning rates and large batch training, making it a useful tool to generate testable predictions about neural network optimization.
Measuring the Effects of Data Parallelism on Neural Network Training
Shallue, Christopher J., Lee, Jaehoon, Antognini, Joe, Sohl-Dickstein, Jascha, Frostig, Roy, Dahl, George E.
Recent hardware developments have made unprecedented amounts of data parallelism available for accelerating neural network training. Among the simplest ways to harness next-generation accelerators is to increase the batch size in standard mini-batch neural network training algorithms. In this work, we aim to experimentally characterize the effects of increasing the batch size on training time, as measured in the number of steps necessary to reach a goal out-of-sample error. Eventually, increasing the batch size will no longer reduce the number of training steps required, but the exact relationship between the batch size and how many training steps are necessary is of critical importance to practitioners, researchers, and hardware designers alike. We study how this relationship varies with the training algorithm, model, and dataset and find extremely large variation between workloads. Along the way, we reconcile disagreements in the literature on whether batch size affects model quality. Finally, we discuss the implications of our results for efforts to train neural networks much faster in the future.