Shai Shalev-Shwartz
Decoupling "when to update" from "how to update"
Eran Malach, Shai Shalev-Shwartz
A useful approach to obtain data is to be creative and mine data from various sources, that were created for different purposes. Unfortunately, this approach often leads to noisy labels. In this paper, we propose a meta algorithm for tackling the noisy labels problem. The key idea is to decouple "when to update" from "how to update". We demonstrate the effectiveness of our algorithm by mining data for gender classification by combining the Labeled Faces in the Wild (LFW) face recognition dataset with a textual genderizing service, which leads to a noisy dataset. While our approach is very simple to implement, it leads to state-of-the-art results. We analyze some convergence properties of the proposed algorithm.
Is Deeper Better only when Shallow is Good?
Eran Malach, Shai Shalev-Shwartz
Understanding the power of depth in feed-forward neural networks is an ongoing challenge in the field of deep learning theory. While current works account for the importance of depth for the expressive power of neural-networks, it remains an open question whether these benefits are exploited during a gradient-based optimization process. In this work we explore the relation between expressivity properties of deep networks and the ability to train them efficiently using gradientbased algorithms. We give a depth separation argument for distributions with fractal structure, showing that they can be expressed efficiently by deep networks, but not with shallow ones. These distributions have a natural coarse-to-fine structure, and we show that the balance between the coarse and fine details has a crucial effect on whether the optimization process is likely to succeed. We prove that when the distribution is concentrated on the fine details, gradient-based algorithms are likely to fail. Using this result we prove that, at least in some distributions, the success of learning deep networks depends on whether the distribution can be approximated by shallower networks, and we conjecture that this property holds in general.
Is Deeper Better only when Shallow is Good?
Eran Malach, Shai Shalev-Shwartz
Understanding the power of depth in feed-forward neural networks is an ongoing challenge in the field of deep learning theory. While current works account for the importance of depth for the expressive power of neural-networks, it remains an open question whether these benefits are exploited during a gradient-based optimization process. In this work we explore the relation between expressivity properties of deep networks and the ability to train them efficiently using gradientbased algorithms. We give a depth separation argument for distributions with fractal structure, showing that they can be expressed efficiently by deep networks, but not with shallow ones. These distributions have a natural coarse-to-fine structure, and we show that the balance between the coarse and fine details has a crucial effect on whether the optimization process is likely to succeed. We prove that when the distribution is concentrated on the fine details, gradient-based algorithms are likely to fail. Using this result we prove that, at least in some distributions, the success of learning deep networks depends on whether the distribution can be approximated by shallower networks, and we conjecture that this property holds in general.
Accelerated Mini-Batch Stochastic Dual Coordinate Ascent
Shai Shalev-Shwartz, Tong Zhang
Stochastic dual coordinate ascent (SDCA) is an effective technique for solving regularized loss minimization problems in machine learning. This paper considers an extension of SDCA under the mini-batch setting that is often used in practice. Our main contribution is to introduce an accelerated mini-batch version of SDCA and prove a fast convergence rate for this method. We discuss an implementation of our method over a parallel computing system, and compare the results to both the vanilla stochastic dual coordinate ascent and to the accelerated deterministic gradient descent method of Nesterov [2007].
Decoupling "when to update" from "how to update"
Eran Malach, Shai Shalev-Shwartz
A useful approach to obtain data is to be creative and mine data from various sources, that were created for different purposes. Unfortunately, this approach often leads to noisy labels. In this paper, we propose a meta algorithm for tackling the noisy labels problem. The key idea is to decouple "when to update" from "how to update". We demonstrate the effectiveness of our algorithm by mining data for gender classification by combining the Labeled Faces in the Wild (LFW) face recognition dataset with a textual genderizing service, which leads to a noisy dataset. While our approach is very simple to implement, it leads to state-of-the-art results. We analyze some convergence properties of the proposed algorithm.