Goto

Collaborating Authors

 Shah, Yash


Effectively Fine-tune to Improve Large Multimodal Models for Radiology Report Generation

arXiv.org Artificial Intelligence

Writing radiology reports from medical images requires a high level of domain expertise. It is time-consuming even for trained radiologists and can be error-prone for inexperienced radiologists. It would be appealing to automate this task by leveraging generative AI, which has shown drastic progress in vision and language understanding. In particular, Large Language Models (LLM) have demonstrated impressive capabilities recently and continued to set new state-of-the-art performance on almost all natural language tasks. While many have proposed architectures to combine vision models with LLMs for multimodal tasks, few have explored practical fine-tuning strategies. In this work, we proposed a simple yet effective two-stage fine-tuning protocol to align visual features to LLM's text embedding space as soft visual prompts. Our framework with OpenLLaMA-7B achieved state-of-the-art level performance without domain-specific pretraining. Moreover, we provide detailed analyses of soft visual prompts and attention mechanisms, shedding light on future research directions.


App for Resume-Based Job Matching with Speech Interviews and Grammar Analysis: A Review

arXiv.org Artificial Intelligence

Through the advancement in natural language processing (NLP), specifically in speech recognition, fully automated complex systems functioning on voice input have started proliferating in areas such as home automation. These systems have been termed Automatic Speech Recognition Systems (ASR). In this review paper, we explore the feasibility of an end-to-end system providing speech and text based natural language processing for job interview preparation as well as recommendation of relevant job postings. We also explore existing recommender-based systems and note their limitations. This literature review would help us identify the approaches and limitations of the various similar use-cases of NLP technology for our upcoming project.