Shah, Syed Afaq Ali
A large scale multi-view RGBD visual affordance learning dataset
Khalifa, Zeyad, Shah, Syed Afaq Ali
The physical and textural attributes of objects have been widely studied for recognition, detection and segmentation tasks in computer vision.~A number of datasets, such as large scale ImageNet, have been proposed for feature learning using data hungry deep neural networks and for hand-crafted feature extraction. To intelligently interact with objects, robots and intelligent machines need the ability to infer beyond the traditional physical/textural attributes, and understand/learn visual cues, called visual affordances, for affordance recognition, detection and segmentation. To date there is no publicly available large dataset for visual affordance understanding and learning. In this paper, we introduce a large scale multi-view RGBD visual affordance learning dataset, a benchmark of 47210 RGBD images from 37 object categories, annotated with 15 visual affordance categories. To the best of our knowledge, this is the first ever and the largest multi-view RGBD visual affordance learning dataset. We benchmark the proposed dataset for affordance segmentation and recognition tasks using popular Vision Transformer and Convolutional Neural Networks. Several state-of-the-art deep learning networks are evaluated each for affordance recognition and segmentation tasks. Our experimental results showcase the challenging nature of the dataset and present definite prospects for new and robust affordance learning algorithms. The dataset is publicly available at https://sites.google.com/view/afaqshah/dataset.
Deep Bayesian Image Set Classification: A Defence Approach against Adversarial Attacks
Mirnateghi, Nima, Shah, Syed Afaq Ali, Bennamoun, Mohammed
Deep learning has become an integral part of various computer vision systems in recent years due to its outstanding achievements for object recognition, facial recognition, and scene understanding. However, deep neural networks (DNNs) are susceptible to be fooled with nearly high confidence by an adversary. In practice, the vulnerability of deep learning systems against carefully perturbed images, known as adversarial examples, poses a dire security threat in the physical world applications. To address this phenomenon, we present, what to our knowledge, is the first ever image set based adversarial defence approach. Image set classification has shown an exceptional performance for object and face recognition, owing to its intrinsic property of handling appearance variability. We propose a robust deep Bayesian image set classification as a defence framework against a broad range of adversarial attacks. We extensively experiment the performance of the proposed technique with several voting strategies. We further analyse the effects of image size, perturbation magnitude, along with the ratio of perturbed images in each image set. We also evaluate our technique with the recent state-of-the-art defence methods, and single-shot recognition task. The empirical results demonstrate superior performance on CIFAR-10, MNIST, ETH-80, and Tiny ImageNet datasets.
WEmbSim: A Simple yet Effective Metric for Image Captioning
Sharif, Naeha, White, Lyndon, Bennamoun, Mohammed, Liu, Wei, Shah, Syed Afaq Ali
The area of automatic image caption evaluation is still undergoing intensive research to address the needs of generating captions which can meet adequacy and fluency requirements. Based on our past attempts at developing highly sophisticated learning-based metrics, we have discovered that a simple cosine similarity measure using the Mean of Word Embeddings(MOWE) of captions can actually achieve a surprisingly high performance on unsupervised caption evaluation. This inspires our proposed work on an effective metric WEmbSim, which beats complex measures such as SPICE, CIDEr and WMD at system-level correlation with human judgments. Moreover, it also achieves the best accuracy at matching human consensus scores for caption pairs, against commonly used unsupervised methods. Therefore, we believe that WEmbSim sets a new baseline for any complex metric to be justified.
SubICap: Towards Subword-informed Image Captioning
Sharif, Naeha, Bennamoun, Mohammed, Liu, Wei, Shah, Syed Afaq Ali
Existing Image Captioning (IC) systems model words as atomic units in captions and are unable to exploit the structural information in the words. This makes representation of rare words very difficult and out-of-vocabulary words impossible. Moreover, to avoid computational complexity, existing IC models operate over a modest sized vocabulary of frequent words, such that the identity of rare words is lost. In this work we address this common limitation of IC systems in dealing with rare words in the corpora. We decompose words into smaller constituent units 'subwords' and represent captions as a sequence of subwords instead of words. This helps represent all words in the corpora using a significantly lower subword vocabulary, leading to better parameter learning. Using subword language modeling, our captioning system improves various metric scores, with a training vocabulary size approximately 90% less than the baseline and various state-of-the-art word-level models. Our quantitative and qualitative results and analysis signify the efficacy of our proposed approach.
LCEval: Learned Composite Metric for Caption Evaluation
Sharif, Naeha, White, Lyndon, Bennamoun, Mohammed, Liu, Wei, Shah, Syed Afaq Ali
Automatic evaluation metrics hold a fundamental importance in the development and fine-grained analysis of captioning systems. While current evaluation metrics tend to achieve an acceptable correlation with human judgements at the system level, they fail to do so at the caption level. In this work, we propose a neural network-based learned metric to improve the caption-level caption evaluation. To get a deeper insight into the parameters which impact a learned metrics performance, this paper investigates the relationship between different linguistic features and the caption-level correlation of the learned metrics. We also compare metrics trained with different training examples to measure the variations in their evaluation. Moreover, we perform a robustness analysis, which highlights the sensitivity of learned and handcrafted metrics to various sentence perturbations. Our empirical analysis shows that our proposed metric not only outperforms the existing metrics in terms of caption-level correlation but it also shows a strong system-level correlation against human assessments.
Deep Learning Models for Early Detection and Prediction of the spread of Novel Coronavirus (COVID-19)
Ayris, Devante, Horbury, Kye, Williams, Blake, Blackney, Mitchell, See, Celine Shi Hui, Shah, Syed Afaq Ali
SARS-CoV2, which causes coronavirus disease (COVID-19) is continuing to spread globally and has become a pandemic. People have lost their lives due to the virus and the lack of counter measures in place. Given the increasing caseload and uncertainty of spread, there is an urgent need to develop machine learning techniques to predict the spread of COVID-19. Prediction of the spread can allow counter measures and actions to be implemented to mitigate the spread of COVID-19. In this paper, we propose a deep learning technique, called Deep Sequential Prediction Model (DSPM) and machine learning based Non-parametric Regression Model (NRM) to predict the spread of COVID-19. Our proposed models were trained and tested on novel coronavirus 2019 dataset, which contains 19.53 Million confirmed cases of COVID-19. Our proposed models were evaluated by using Mean Absolute Error and compared with baseline method. Our experimental results, both quantitative and qualitative, demonstrate the superior prediction performance of the proposed models.
Attention in Convolutional LSTM for Gesture Recognition
Zhang, Liang, Zhu, Guangming, Mei, Lin, Shen, Peiyi, Shah, Syed Afaq Ali, Bennamoun, Mohammed
Convolutional long short-term memory (LSTM) networks have been widely used for action/gesture recognition, and different attention mechanisms have also been embedded into the LSTM or the convolutional LSTM (ConvLSTM) networks. Based on the previous gesture recognition architectures which combine the three-dimensional convolution neural network (3DCNN) and ConvLSTM, this paper explores the effects of attention mechanism in ConvLSTM. Several variants of ConvLSTM are evaluated: (a) Removing the convolutional structures of the three gates in ConvLSTM, (b) Applying the attention mechanism on the input of ConvLSTM, (c) Reconstructing the input and (d) output gates respectively with the modified channel-wise attention mechanism. The evaluation results demonstrate that the spatial convolutions in the three gates scarcely contribute to the spatiotemporal feature fusion, and the attention mechanisms embedded into the input and output gates cannot improve the feature fusion. In other words, ConvLSTM mainly contributes to the temporal fusion along with the recurrent steps to learn the long-term spatiotemporal features, when taking as input the spatial or spatiotemporal features. On this basis, a new variant of LSTM is derived, in which the convolutional structures are only embedded into the input-to-state transition of LSTM. The code of the LSTM variants is publicly available.
Attention in Convolutional LSTM for Gesture Recognition
Zhang, Liang, Zhu, Guangming, Mei, Lin, Shen, Peiyi, Shah, Syed Afaq Ali, Bennamoun, Mohammed
Convolutional long short-term memory (LSTM) networks have been widely used for action/gesture recognition, and different attention mechanisms have also been embedded into the LSTM or the convolutional LSTM (ConvLSTM) networks. Based on the previous gesture recognition architectures which combine the three-dimensional convolution neural network (3DCNN) and ConvLSTM, this paper explores the effects of attention mechanism in ConvLSTM. Several variants of ConvLSTM are evaluated: (a) Removing the convolutional structures of the three gates in ConvLSTM, (b) Applying the attention mechanism on the input of ConvLSTM, (c) Reconstructing the input and (d) output gates respectively with the modified channel-wise attention mechanism. The evaluation results demonstrate that the spatial convolutions in the three gates scarcely contribute to the spatiotemporal feature fusion, and the attention mechanisms embedded into the input and output gates cannot improve the feature fusion. In other words, ConvLSTM mainly contributes to the temporal fusion along with the recurrent steps to learn the long-term spatiotemporal features, when taking as input the spatial or spatiotemporal features. On this basis, a new variant of LSTM is derived, in which the convolutional structures are only embedded into the input-to-state transition of LSTM. The code of the LSTM variants is publicly available.