Shah, Devavrat
Regret vs. Bandwidth Trade-off for Recommendation Systems
Song, Linqi, Fragouli, Christina, Shah, Devavrat
We consider recommendation systems that need to operate under wireless bandwidth constraints, measured as number of broadcast transmissions, and demonstrate a (tight for some instances) tradeoff between regret and bandwidth for two scenarios: the case of multi-armed bandit with context, and the case where there is a latent structure in the message space that we can exploit to reduce the learning phase.
Time Series Analysis via Matrix Estimation
Agarwal, Anish, Amjad, Muhammad Jehangir, Shah, Devavrat, Shen, Dennis
We consider the task of interpolating and forecasting a time series in the presence of noise and missing data. As the main contribution of this work, we introduce an algorithm that transforms the observed time series into a matrix, utilizes singular value thresholding to simultaneously recover missing values and de-noise observed entries, and performs linear regression to make predictions. We argue that this method provides meaningful imputation and forecasting for a large class of models: finite sum of harmonics (which approximate stationary processes), non-stationary sublinear trends, Linear Time-Invariant (LTI) systems, and their additive mixtures. In general, our algorithm recovers the hidden state of dynamics based on its noisy observations, like that of a Hidden Markov Model (HMM), provided the dynamics obey the above stated models. We demonstrate on synthetic and real-world datasets that our algorithm outperforms standard software packages not only in the presence of significantly missing data with high levels of noise, but also when the packages are given the underlying model while our algorithm remains oblivious. This is in line with the finite sample analysis for these model classes.
Q-learning with Nearest Neighbors
Shah, Devavrat, Xie, Qiaomin
We consider the problem of model-free reinforcement learning for infinite-horizon discounted Markov Decision Processes (MDPs) with a continuous state space and unknown transition kernels, when only a single sample path of the system is available. We focus on the classical approach of Q-learning where the goal is to learn the optimal Q-function. We propose the Nearest Neighbor Q-Learning approach that utilizes nearest neighbor regression method to learn the Q function. We provide finite sample analysis of the convergence rate using this method. In particular, we establish that the algorithm is guaranteed to output an $\epsilon$-accurate estimate of the optimal Q-function with high probability using a number of observations that depends polynomially on $\epsilon$ and the model parameters. To establish our results, we develop a robust version of stochastic approximation results; this may be of interest in its own right.
Thy Friend is My Friend: Iterative Collaborative Filtering for Sparse Matrix Estimation
Borgs, Christian, Chayes, Jennifer, Lee, Christina E., Shah, Devavrat
The sparse matrix estimation problem consists of estimating the distribution of an $n\times n$ matrix $Y$, from a sparsely observed single instance of this matrix where the entries of $Y$ are independent random variables. This captures a wide array of problems; special instances include matrix completion in the context of recommendation systems, graphon estimation, and community detection in (mixed membership) stochastic block models. Inspired by classical collaborative filtering for recommendation systems, we propose a novel iterative, collaborative filtering-style algorithm for matrix estimation in this generic setting. We show that the mean squared error (MSE) of our estimator converges to $0$ at the rate of $O(d^2 (pn)^{-2/5})$ as long as $\omega(d^5 n)$ random entries from a total of $n^2$ entries of $Y$ are observed (uniformly sampled), $\E[Y]$ has rank $d$, and the entries of $Y$ have bounded support. The maximum squared error across all entries converges to $0$ with high probability as long as we observe a little more, $\Omega(d^5 n \ln^5(n))$ entries. Our results are the best known sample complexity results in this generality.
Robust Synthetic Control
Amjad, Muhammad Jehangir, Shah, Devavrat, Shen, Dennis
We present a robust generalization of the synthetic control method for comparative case studies. Like the classical method, we present an algorithm to estimate the unobservable counterfactual of a treatment unit. A distinguishing feature of our algorithm is that of de-noising the data matrix via singular value thresholding, which renders our approach robust in multiple facets: it automatically identifies a good subset of donors, overcomes the challenges of missing data, and continues to work well in settings where covariate information may not be provided. To begin, we establish the condition under which the fundamental assumption in synthetic control-like approaches holds, i.e. when the linear relationship between the treatment unit and the donor pool prevails in both the pre- and post-intervention periods. We provide the first finite sample analysis for a broader class of models, the Latent Variable Model, in contrast to Factor Models previously considered in the literature. Further, we show that our de-noising procedure accurately imputes missing entries, producing a consistent estimator of the underlying signal matrix provided $p = \Omega( T^{-1 + \zeta})$ for some $\zeta > 0$; here, $p$ is the fraction of observed data and $T$ is the time interval of interest. Under the same setting, we prove that the mean-squared-error (MSE) in our prediction estimation scales as $O(\sigma^2/p + 1/\sqrt{T})$, where $\sigma^2$ is the noise variance. Using a data aggregation method, we show that the MSE can be made as small as $O(T^{-1/2+\gamma})$ for any $\gamma \in (0, 1/2)$, leading to a consistent estimator. We also introduce a Bayesian framework to quantify the model uncertainty through posterior probabilities. Our experiments, using both real-world and synthetic datasets, demonstrate that our robust generalization yields an improvement over the classical synthetic control method.
Blind Regression: Nonparametric Regression for Latent Variable Models via Collaborative Filtering
Song, Dogyoon, Lee, Christina E., Li, Yihua, Shah, Devavrat
We introduce the framework of {\em blind regression} motivated by {\em matrix completion} for recommendation systems: given $m$ users, $n$ movies, and a subset of user-movie ratings, the goal is to predict the unobserved user-movie ratings given the data, i.e., to complete the partially observed matrix. Following the framework of non-parametric statistics, we posit that user $u$ and movie $i$ have features $x_1(u)$ and $x_2(i)$ respectively, and their corresponding rating $y(u,i)$ is a noisy measurement of $f(x_1(u), x_2(i))$ for some unknown function $f$. In contrast with classical regression, the features $x = (x_1(u), x_2(i))$ are not observed, making it challenging to apply standard regression methods to predict the unobserved ratings. Inspired by the classical Taylor's expansion for differentiable functions, we provide a prediction algorithm that is consistent for all Lipschitz functions. In fact, the analysis through our framework naturally leads to a variant of collaborative filtering, shedding insight into the widespread success of collaborative filtering in practice. Assuming each entry is sampled independently with probability at least $\max(m^{-1+\delta},n^{-1/2+\delta})$ with $\delta > 0$, we prove that the expected fraction of our estimates with error greater than $\epsilon$ is less than $\gamma^2 / \epsilon^2$ plus a polynomially decaying term, where $\gamma^2$ is the variance of the additive entry-wise noise term. Experiments with the MovieLens and Netflix datasets suggest that our algorithm provides principled improvements over basic collaborative filtering and is competitive with matrix factorization methods.
Regret Guarantees for Item-Item Collaborative Filtering
Bresler, Guy, Shah, Devavrat, Voloch, Luis F.
There is much empirical evidence that item-item collaborative filtering works well in practice. Motivated to understand this, we provide a framework to design and analyze various recommendation algorithms. The setup amounts to online binary matrix completion, where at each time a random user requests a recommendation and the algorithm chooses an entry to reveal in the user's row. The goal is to minimize regret, or equivalently to maximize the number of +1 entries revealed at any time. We analyze an item-item collaborative filtering algorithm that can achieve fundamentally better performance compared to user-user collaborative filtering. The algorithm achieves good "cold-start" performance (appropriately defined) by quickly making good recommendations to new users about whom there is little information.
Rank Centrality: Ranking from Pair-wise Comparisons
Negahban, Sahand, Oh, Sewoong, Shah, Devavrat
The question of aggregating pair-wise comparisons to obtain a global ranking over a collection of objects has been of interest for a very long time: be it ranking of online gamers (e.g. MSR's TrueSkill system) and chess players, aggregating social opinions, or deciding which product to sell based on transactions. In most settings, in addition to obtaining a ranking, finding `scores' for each object (e.g. player's rating) is of interest for understanding the intensity of the preferences. In this paper, we propose Rank Centrality, an iterative rank aggregation algorithm for discovering scores for objects (or items) from pair-wise comparisons. The algorithm has a natural random walk interpretation over the graph of objects with an edge present between a pair of objects if they are compared; the score, which we call Rank Centrality, of an object turns out to be its stationary probability under this random walk. To study the efficacy of the algorithm, we consider the popular Bradley-Terry-Luce (BTL) model (equivalent to the Multinomial Logit (MNL) for pair-wise comparisons) in which each object has an associated score which determines the probabilistic outcomes of pair-wise comparisons between objects. In terms of the pair-wise marginal probabilities, which is the main subject of this paper, the MNL model and the BTL model are identical. We bound the finite sample error rates between the scores assumed by the BTL model and those estimated by our algorithm. In particular, the number of samples required to learn the score well with high probability depends on the structure of the comparison graph. When the Laplacian of the comparison graph has a strictly positive spectral gap, e.g. each item is compared to a subset of randomly chosen items, this leads to dependence on the number of samples that is nearly order-optimal.
Structure learning of antiferromagnetic Ising models
Bresler, Guy, Gamarnik, David, Shah, Devavrat
In this paper we investigate the computational complexity of learning the graph structure underlying a discrete undirected graphical model from i.i.d. samples. Our first result is an unconditional computational lower bound of $\Omega (p^{d/2})$ for learning general graphical models on $p$ nodes of maximum degree $d$, for the class of statistical algorithms recently introduced by Feldman et al. The construction is related to the notoriously difficult learning parities with noise problem in computational learning theory. Our lower bound shows that the $\widetilde O(p^{d+2})$ runtime required by Bresler, Mossel, and Sly's exhaustive-search algorithm cannot be significantly improved without restricting the class of models. Aside from structural assumptions on the graph such as it being a tree, hypertree, tree-like, etc., most recent papers on structure learning assume that the model has the correlation decay property. Indeed, focusing on ferromagnetic Ising models, Bento and Montanari showed that all known low-complexity algorithms fail to learn simple graphs when the interaction strength exceeds a number related to the correlation decay threshold. Our second set of results gives a class of repelling (antiferromagnetic) models that have the \emph{opposite} behavior: very strong repelling allows efficient learning in time $\widetilde O(p^2)$. We provide an algorithm whose performance interpolates between $\widetilde O(p^2)$ and $\widetilde O(p^{d+2})$ depending on the strength of the repulsion.
Hardness of parameter estimation in graphical models
Bresler, Guy, Gamarnik, David, Shah, Devavrat
We consider the problem of learning the canonical parameters specifying an undirected graphical model (Markov random field) from the mean parameters. For graphical models representing a minimal exponential family, the canonical parameters are uniquely determined by the mean parameters, so the problem is feasible in principle. The goal of this paper is to investigate the computational feasibility of this statistical task. Our main result shows that parameter estimation is in general intractable: no algorithm can learn the canonical parameters of a generic pair-wise binary graphical model from the mean parameters in time bounded by a polynomial in the number of variables (unless RP = NP). Indeed, such a result has been believed to be true (see the monograph by Wainwright and Jordan) but no proof was known. Our proof gives a polynomial time reduction from approximating the partition function of the hard-core model, known to be hard, to learning approximate parameters. Our reduction entails showing that the marginal polytope boundary has an inherent repulsive property, which validates an optimization procedure over the polytope that does not use any knowledge of its structure (as required by the ellipsoid method and others).