Not enough data to create a plot.
Try a different view from the menu above.
Shah, Anshul
Dual Prompt Tuning for Domain-Aware Federated Learning
Wei, Guoyizhe, Wang, Feng, Shah, Anshul, Chellappa, Rama
Federated learning is a distributed machine learning paradigm that allows multiple clients to collaboratively train a shared model with their local data. Nonetheless, conventional federated learning algorithms often struggle to generalize well due to the ubiquitous domain shift across clients. In this work, we consider a challenging yet realistic federated learning scenario where the training data of each client originates from different domains. We address the challenges of domain shift by leveraging the technique of prompt learning, and propose a novel method called Federated Dual Prompt Tuning (Fed-DPT). Specifically, Fed-DPT employs a pre-trained vision-language model and then applies both visual and textual prompt tuning to facilitate domain adaptation over decentralized data. Extensive experiments of Fed-DPT demonstrate its significant effectiveness in domain-aware federated learning. With a pre-trained CLIP model (ViT-Base as image encoder), the proposed Fed-DPT attains 68.4% average accuracy over six domains in the DomainNet dataset, which improves the original CLIP by a large margin of 14.8%.
Object-Aware Cropping for Self-Supervised Learning
Mishra, Shlok, Shah, Anshul, Bansal, Ankan, Jagannatha, Abhyuday, Anjaria, Janit, Sharma, Abhishek, Jacobs, David, Krishnan, Dilip
A core component of the recent success of self-supervised learning is cropping data augmentation, which selects sub-regions of an image to be used as positive views in the self-supervised loss. The underlying assumption is that randomly cropped and resized regions of a given image share information about the objects of interest, which the learned representation will capture. This assumption is mostly satisfied in datasets such as ImageNet where there is a large, centered object, which is highly likely to be present in random crops of the full image. However, in other datasets such as OpenImages or COCO, which are more representative of real world uncurated data, there are typically multiple small objects in an image. In this work, we show that self-supervised learning based on the usual random cropping performs poorly on such datasets. We propose replacing one or both of the random crops with crops obtained from an object proposal algorithm. This encourages the model to learn both object and scene level semantic representations. Using this approach, which we call object-aware cropping, results in significant improvements over scene cropping on classification and object detection benchmarks. For example, on OpenImages, our approach achieves an improvement of 8.8% mAP over random scene-level cropping using MoCo-v2 based pre-training. We also show significant improvements on COCO and PASCAL-VOC object detection and segmentation tasks over the state-of-the-art self-supervised learning approaches. Our approach is efficient, simple and general, and can be used in most existing contrastive and non-contrastive self-supervised learning frameworks.
Learning Visual Representations for Transfer Learning by Suppressing Texture
Mishra, Shlok, Shah, Anshul, Bansal, Ankan, Anjaria, Janit, Choi, Jonghyun, Shrivastava, Abhinav, Sharma, Abhishek, Jacobs, David
Recent literature has shown that features obtained from supervised training of CNNs may over-emphasize texture rather than encoding high-level information. In self-supervised learning in particular, texture as a low-level cue may provide shortcuts that prevent the network from learning higher level representations. To address these problems we propose to use classic methods based on anisotropic diffusion to augment training using images with suppressed texture. This simple method helps retain important edge information and suppress texture at the same time. We empirically show that our method achieves state-of-the-art results on object detection and image classification with eight diverse datasets in either supervised or self-supervised learning tasks such as MoCoV2 and Jigsaw. Our method is particularly effective for transfer learning tasks and we observed improved performance on five standard transfer learning datasets. The large improvements (up to 11.49\%) on the Sketch-ImageNet dataset, DTD dataset and additional visual analyses with saliency maps suggest that our approach helps in learning better representations that better transfer.
Max-Margin Contrastive Learning
Shah, Anshul, Sra, Suvrit, Chellappa, Rama, Cherian, Anoop
Standard contrastive learning approaches usually require a large number of negatives for effective unsupervised learning and often exhibit slow convergence. We suspect this behavior is due to the suboptimal selection of negatives used for offering contrast to the positives. We counter this difficulty by taking inspiration from support vector machines (SVMs) to present max-margin contrastive learning (MMCL). Our approach selects negatives as the sparse support vectors obtained via a quadratic optimization problem, and contrastiveness is enforced by maximizing the decision margin. As SVM optimization can be computationally demanding, especially in an end-to-end setting, we present simplifications that alleviate the computational burden. We validate our approach on standard vision benchmark datasets, demonstrating better performance in unsupervised representation learning over state-of-the-art, while having better empirical convergence properties.