Goto

Collaborating Authors

 Shah, Abhishek


A Hybrid Approach for Depression Classification: Random Forest-ANN Ensemble on Motor Activity Signals

arXiv.org Artificial Intelligence

Regarding the rising number of people suffering from mental health illnesses in today's society, the importance of mental health cannot be overstated. Wearable sensors, which are increasingly widely available, provide a potential way to track and comprehend mental health issues. These gadgets not only monitor everyday activities but also continuously record vital signs like heart rate, perhaps providing information on a person's mental state. Recent research has used these sensors in conjunction with machine learning methods to identify patterns relating to different mental health conditions, highlighting the immense potential of this data beyond simple activity monitoring. In this research, we present a novel algorithm called the Hybrid Random forest - Neural network that has been tailored to evaluate sensor data from depressed patients. Our method has a noteworthy accuracy of 80\% when evaluated on a special dataset that included both unipolar and bipolar depressive patients as well as healthy controls. The findings highlight the algorithm's potential for reliably determining a person's depression condition using sensor data, making a substantial contribution to the area of mental health diagnostics.


Bootstrapping Conversational Agents With Weak Supervision

arXiv.org Artificial Intelligence

Many conversational agents in the market today follow a standard bot development framework which requires training intent classifiers to recognize user input. The need to create a proper set of training examples is often the bottleneck in the development process. In many occasions agent developers have access to historical chat logs that can provide a good quantity as well as coverage of training examples. However, the cost of labeling them with tens to hundreds of intents often prohibits taking full advantage of these chat logs. In this paper, we present a framework called \textit{search, label, and propagate} (SLP) for bootstrapping intents from existing chat logs using weak supervision. The framework reduces hours to days of labeling effort down to minutes of work by using a search engine to find examples, then relies on a data programming approach to automatically expand the labels. We report on a user study that shows positive user feedback for this new approach to build conversational agents, and demonstrates the effectiveness of using data programming for auto-labeling. While the system is developed for training conversational agents, the framework has broader application in significantly reducing labeling effort for training text classifiers.