Goto

Collaborating Authors

 Shafaei, Mahsa


Labeling Comic Mischief Content in Online Videos with a Multimodal Hierarchical-Cross-Attention Model

arXiv.org Artificial Intelligence

We address the challenge of detecting questionable content in online media, specifically the subcategory of comic mischief. This type of content combines elements such as violence, adult content, or sarcasm with humor, making it difficult to detect. Employing a multimodal approach is vital to capture the subtle details inherent in comic mischief content. To tackle this problem, we propose a novel end-to-end multimodal system for the task of comic mischief detection. As part of this contribution, we release a novel dataset for the targeted task consisting of three modalities: video, text (video captions and subtitles), and audio. We also design a HIerarchical Cross-attention model with CAPtions (HICCAP) to capture the intricate relationships among these modalities. The results show that the proposed approach makes a significant improvement over robust baselines and state-of-the-art models for comic mischief detection and its type classification. This emphasizes the potential of our system to empower users, to make informed decisions about the online content they choose to see. In addition, we conduct experiments on the UCF101, HMDB51, and XD-Violence datasets, comparing our model against other state-of-the-art approaches showcasing the outstanding performance of our proposed model in various scenarios.


Positive and Risky Message Assessment for Music Products

arXiv.org Artificial Intelligence

People can use various tools, such as high-fidelity players and streaming apps, to enjoy In this work, we introduce a novel NLP task: assessing music at any time. Listeners can simply go the positive and risky messages of a music online, press the PLAY button, and find themselves item. We study the messages that a music item invigorated after a bad day. However, this easy access conveys from five significant dimensions regarding also raises concerns that children and adolescents appropriateness: Positive Messages, Violence, may have a higher chance of being exposed to Substance Consumption, Sex, and Consumerism risky content.


ParsiNLU: A Suite of Language Understanding Challenges for Persian

arXiv.org Artificial Intelligence

Despite the progress made in recent years in addressing natural language understanding (NLU) challenges, the majority of this progress remains to be concentrated on resource-rich languages like English. This work focuses on Persian language, one of the widely spoken languages in the world, and yet there are few NLU datasets available for this rich language. The availability of high-quality evaluation datasets is a necessity for reliable assessment of the progress on different NLU tasks and domains. We introduce ParsiNLU, the first benchmark in Persian language that includes a range of high-level tasks -- Reading Comprehension, Textual Entailment, etc. These datasets are collected in a multitude of ways, often involving manual annotations by native speakers. This results in over 14.5$k$ new instances across 6 distinct NLU tasks. Besides, we present the first results on state-of-the-art monolingual and multi-lingual pre-trained language-models on this benchmark and compare them with human performance, which provides valuable insights into our ability to tackle natural language understanding challenges in Persian. We hope ParsiNLU fosters further research and advances in Persian language understanding.