Goto

Collaborating Authors

 Seyedhosseini, Mojtaba


Gemini Embedding: Generalizable Embeddings from Gemini

arXiv.org Artificial Intelligence

Embedding models, which transform inputs into dense vector representations, are pivotal for capturing semantic information across various domains and modalities. Text embedding models represent words and sentences as vectors, strategically positioning semantically similar texts in close proximity within the embedding space (Gao et al., 2021; Le and Mikolov, 2014; Reimers and Gurevych, 2019). Recent research has focused on developing general-purpose embedding models capable of excelling in diverse downstream tasks, including information retrieval, clustering, and classification (Cer et al., 2018; Muennighoff et al., 2023). Leveraging their vast pre-training knowledge, large language models (LLMs) have emerged as a promising avenue for constructing such general-purpose embedding models, with the potential to significantly enhance performance across a broad spectrum of applications (Anil et al., 2023a,b; Brown et al., 2020). The integration of LLMs has revolutionized the development of high-quality embedding models through two primary approaches. Firstly, LLMs have been employed to refine training datasets by generating higher quality examples. Techniques such as hard negative mining (Lee et al., 2024) and synthetic data generation (Dai et al., 2022; Wang et al., 2023) enable the distillation of LLM knowledge into smaller, more efficient embedding models, leading to substantial performance gains. Secondly, recognizing that the embedding model parameters are frequently initialized from language models (Devlin et al., 2019; Karpukhin et al., 2020), researchers have explored leveraging LLM parameters directly for initialization (Ni et al., 2021).


Gemini: A Family of Highly Capable Multimodal Models

arXiv.org Artificial Intelligence

This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of Gemini models in cross-modal reasoning and language understanding will enable a wide variety of use cases and we discuss our approach toward deploying them responsibly to users.


PaLI: A Jointly-Scaled Multilingual Language-Image Model

arXiv.org Artificial Intelligence

Effective scaling and a flexible task interface enable large language models to excel at many tasks. We present PaLI (Pathways Language and Image model), a model that extends this approach to the joint modeling of language and vision. PaLI generates text based on visual and textual inputs, and with this interface performs many vision, language, and multimodal tasks, in many languages. To train PaLI, we make use of large pre-trained encoder-decoder language models and Vision Transformers (ViTs). This allows us to capitalize on their existing capabilities and leverage the substantial cost of training them. We find that joint scaling of the vision and language components is important. Since existing Transformers for language are much larger than their vision counterparts, we train a large, 4-billion parameter ViT (ViT-e) to quantify the benefits from even larger-capacity vision models. To train PaLI, we create a large multilingual mix of pretraining tasks, based on a new image-text training set containing 10B images and texts in over 100 languages. PaLI achieves state-of-the-art in multiple vision and language tasks (such as captioning, visual question-answering, scene-text understanding), while retaining a simple, modular, and scalable design.


PaLI-X: On Scaling up a Multilingual Vision and Language Model

arXiv.org Artificial Intelligence

We present the training recipe and results of scaling up PaLI-X, a multilingual vision and language model, both in terms of size of the components and the breadth of its training task mixture. Our model achieves new levels of performance on a wide-range of varied and complex tasks, including multiple image-based captioning and question-answering tasks, image-based document understanding and few-shot (in-context) learning, as well as object detection, video question answering, and video captioning. PaLI-X advances the state-of-the-art on most vision-and-language benchmarks considered (25+ of them). Finally, we observe emerging capabilities, such as complex counting and multilingual object detection, tasks that are not explicitly in the training mix.