Goto

Collaborating Authors

 Seychell, Dylan


Towards New Benchmark for AI Alignment & Sentiment Analysis in Socially Important Issues: A Comparative Study of Human and LLMs in the Context of AGI

arXiv.org Artificial Intelligence

With the expansion of neural networks, such as large language models, humanity is exponentially heading towards superintelligence. As various AI systems are increasingly integrated into the fabric of societies-through recommending values, devising creative solutions, and making decisions-it becomes critical to assess how these AI systems impact humans in the long run. This research aims to contribute towards establishing a benchmark for evaluating the sentiment of various Large Language Models in socially importan issues. The methodology adopted was a Likert scale survey. Seven LLMs, including GPT-4 and Bard, were analyzed and compared against sentiment data from three independent human sample populations. Temporal variations in sentiment were also evaluated over three consecutive days. The results highlighted a diversity in sentiment scores among LLMs, ranging from 3.32 to 4.12 out of 5. GPT-4 recorded the most positive sentiment score towards AGI, whereas Bard was leaning towards the neutral sentiment. The human samples, contrastingly, showed a lower average sentiment of 2.97. The temporal comparison revealed differences in sentiment evolution between LLMs in three days, ranging from 1.03% to 8.21%. The study's analysis outlines the prospect of potential conflicts of interest and bias possibilities in LLMs' sentiment formation. Results indicate that LLMs, akin to human cognitive processes, could potentially develop unique sentiments and subtly influence societies' perceptions towards various opinions formed within the LLMs.


Correlation of Object Detection Performance with Visual Saliency and Depth Estimation

arXiv.org Artificial Intelligence

As object detection techniques continue to evolve, understanding their relationships with complementary visual tasks becomes crucial for optimising model architectures and computational resources. This paper investigates the correlations between object detection accuracy and two fundamental visual tasks: depth prediction and visual saliency prediction. Through comprehensive experiments using state-of-the-art models (DeepGaze IIE, Depth Anything, DPT-Large, and Itti's model) on COCO and Pascal VOC datasets, we find that visual saliency shows consistently stronger correlations with object detection accuracy (mA$\rho$ up to 0.459 on Pascal VOC) compared to depth prediction (mA$\rho$ up to 0.283). Our analysis reveals significant variations in these correlations across object categories, with larger objects showing correlation values up to three times higher than smaller objects. These findings suggest incorporating visual saliency features into object detection architectures could be more beneficial than depth information, particularly for specific object categories. The observed category-specific variations also provide insights for targeted feature engineering and dataset design improvements, potentially leading to more efficient and accurate object detection systems.


An XAI Approach to Deep Learning Models in the Detection of DCIS

arXiv.org Artificial Intelligence

Deep Learning models have been employed over the past decade to improve the detection of conditions relative to the human body and in relation to breast cancer particularly. However, their application to the clinical domain has been limited even though they improved the detection of breast cancer in women at an early stage. Our contribution attempts to interpret the early detection of breast cancer while enhancing clinicians' confidence in such techniques through the use of eXplainable AI. We researched the best way to back-propagate a selected CNN model, previously developed in 2017; and adapted in 2019. Our methodology proved that it is possible to uncover the intricacies involved within a model; at neuron level, in converging towards the classification of a mammogram. After conducting a number of tests using five back-propagation methods, we noted that the Deep Taylor Decomposition and the LRP-Epsilon techniques produced the best results. These were obtained on a subset of 20 mammograms chosen at random from the CBIS-DDSM dataset. The results showed that XAI can indeed be used as a proof of concept to begin discussions on the implementation of assistive AI systems within the clinical community.


Predicting Relative Depth between Objects from Semantic Features

arXiv.org Artificial Intelligence

Vision and language tasks such as Visual Relation Detection and Visual Question Answering benefit from semantic features that afford proper grounding of language. The 3D depth of objects depicted in 2D images is one such feature. However it is very difficult to obtain accurate depth information without learning the appropriate features, which are scene dependent. The state of the art in this area are complex Neural Network models trained on stereo image data to predict depth per pixel. Fortunately, in some tasks, its only the relative depth between objects that is required. In this paper the extent to which semantic features can predict course relative depth is investigated. The problem is casted as a classification one and geometrical features based on object bounding boxes, object labels and scene attributes are computed and used as inputs to pattern recognition models to predict relative depth. i.e behind, in-front and neutral. The results are compared to those obtained from averaging the output of the monodepth neural network model, which represents the state-of-the art. An overall increase of 14% in relative depth accuracy over relative depth computed from the monodepth model derived results is achieved.