Goto

Collaborating Authors

 Sewak, Mohit


Making Large Language Models Better Data Creators

arXiv.org Artificial Intelligence

Although large language models (LLMs) have advanced the state-of-the-art in NLP significantly, deploying them for downstream applications is still challenging due to cost, responsiveness, control, or concerns around privacy and security. As such, trainable models are still the preferred option in some cases. However, these models still require human-labeled data for optimal performance, which is expensive and time-consuming to obtain. In order to address this issue, several techniques to reduce human effort involve labeling or generating data using LLMs. Although these methods are effective for certain applications, in practice they encounter difficulties in real-world scenarios. Labeling data requires careful data selection, while generating data necessitates task-specific prompt engineering. In this paper, we propose a unified data creation pipeline that requires only a single formatting example, and which is applicable to a broad range of tasks, including traditionally problematic ones with semantically devoid label spaces. In our experiments we demonstrate that instruction-following LLMs are highly cost-effective data creators, and that models trained with these data exhibit performance better than those trained with human-labeled data (by up to 17.5%) on out-of-distribution evaluation, while maintaining comparable performance on in-distribution tasks. These results have important implications for the robustness of NLP systems deployed in the real-world.


ADVERSARIALuscator: An Adversarial-DRL Based Obfuscator and Metamorphic Malware SwarmGenerator

arXiv.org Artificial Intelligence

Advanced metamorphic malware and ransomware, by using obfuscation, could alter their internal structure with every attack. If such malware could intrude even into any of the IoT networks, then even if the original malware instance gets detected, by that time it can still infect the entire network. It is challenging to obtain training data for such evasive malware. Therefore, in this paper, we present ADVERSARIALuscator, a novel system that uses specialized Adversarial-DRL to obfuscate malware at the opcode level and create multiple metamorphic instances of the same. To the best of our knowledge, ADVERSARIALuscator is the first-ever system that adopts the Markov Decision Process-based approach to convert and find a solution to the problem of creating individual obfuscations at the opcode level. This is important as the machine language level is the least at which functionality could be preserved so as to mimic an actual attack effectively. ADVERSARIALuscator is also the first-ever system to use efficient continuous action control capable of deep reinforcement learning agents like the Proximal Policy Optimization in the area of cyber security. Experimental results indicate that ADVERSARIALuscator could raise the metamorphic probability of a corpus of malware by >0.45. Additionally, more than 33% of metamorphic instances generated by ADVERSARIALuscator were able to evade the most potent IDS. If such malware could intrude even into any of the IoT networks, then even if the original malware instance gets detected, by that time it can still infect the entire network. Hence ADVERSARIALuscator could be used to generate data representative of a swarm of very potent and coordinated AI-based metamorphic malware attacks. The so generated data and simulations could be used to bolster the defenses of an IDS against an actual AI-based metamorphic attack from advanced malware and ransomware.


DRo: A data-scarce mechanism to revolutionize the performance of Deep Learning based Security Systems

arXiv.org Artificial Intelligence

Supervised Deep Learning requires plenty of labeled data to converge, and hence perform optimally for task-specific learning. Therefore, we propose a novel mechanism named DRo (for Deep Routing) for data-scarce domains like security. The DRo approach builds upon some of the recent developments in Deep-Clustering. In particular, it exploits the self-augmented training mechanism using synthetically generated local perturbations. DRo not only allays the challenges with sparse-labeled data but also offers many unique advantages. We also developed a system named DRoID that uses the DRo mechanism for enhancing the performance of an existing Malware Detection System that uses (low information features like the) Android implicit Intent(s) as the only features. We conduct experiments on DRoID using a popular and standardized Android malware dataset and found that the DRo mechanism could successfully reduce the false-alarms generated by the downstream classifier by 67.9%, and also simultaneously boosts its accuracy by 11.3%. This is significant not only because the gains achieved are unparalleled but also because the features used were never considered rich enough to train a classifier on; and hence no decent performance could ever be reported by any malware classification system till-date using these features in isolation. Owing to the results achieved, the DRo mechanism claims a dominant position amongst all known systems that aims to enhance the classification performance of deep learning models with sparse-labeled data.


DRLDO: A novel DRL based De-ObfuscationSystem for Defense against Metamorphic Malware

arXiv.org Artificial Intelligence

In this paper, we propose a novel mechanism to normalize metamorphic and obfuscated malware down at the opcode level and hence create an advanced metamorphic malware de-obfuscation and defense system. We name this system DRLDO, for Deep Reinforcement Learning based De-Obfuscator. With the inclusion of the DRLDO as a sub-component, an existing Intrusion Detection System could be augmented with defensive capabilities against 'zero-day' attacks from obfuscated and metamorphic variants of existing malware. This gains importance, not only because there exists no system to date that uses advanced DRL to intelligently and automatically normalize obfuscation down even to the opcode level, but also because the DRLDO system does not mandate any changes to the existing IDS. The DRLDO system does not even mandate the IDS' classifier to be retrained with any new dataset containing obfuscated samples. Hence DRLDO could be easily retrofitted into any existing IDS deployment. We designed, developed, and conducted experiments on the system to evaluate the same against multiple-simultaneous attacks from obfuscations generated from malware samples from a standardized dataset that contains multiple generations of malware. Experimental results prove that DRLDO was able to successfully make the otherwise un-detectable obfuscated variants of the malware detectable by an existing pre-trained malware classifier. The detection probability was raised well above the cut-off mark to 0.6 for the classifier to detect the obfuscated malware unambiguously. Further, the de-obfuscated variants generated by DRLDO achieved a very high correlation (of 0.99) with the base malware. This observation validates that the DRLDO system is actually learning to de-obfuscate and not exploiting a trivial trick.


Robust Android Malware Detection System against Adversarial Attacks using Q-Learning

arXiv.org Artificial Intelligence

The current state-of-the-art Android malware detection systems are based on machine learning and deep learning models. Despite having superior performance, these models are susceptible to adversarial attacks. Therefore in this paper, we developed eight Android malware detection models based on machine learning and deep neural network and investigated their robustness against adversarial attacks. For this purpose, we created new variants of malware using Reinforcement Learning, which will be misclassified as benign by the existing Android malware detection models. We propose two novel attack strategies, namely single policy attack and multiple policy attack using reinforcement learning for white-box and grey-box scenario respectively. Putting ourselves in the adversary's shoes, we designed adversarial attacks on the detection models with the goal of maximizing fooling rate, while making minimum modifications to the Android application and ensuring that the app's functionality and behavior do not change. We achieved an average fooling rate of 44.21% and 53.20% across all the eight detection models with a maximum of five modifications using a single policy attack and multiple policy attack, respectively. The highest fooling rate of 86.09% with five changes was attained against the decision tree-based model using the multiple policy approach. Finally, we propose an adversarial defense strategy that reduces the average fooling rate by threefold to 15.22% against a single policy attack, thereby increasing the robustness of the detection models i.e. the proposed model can effectively detect variants (metamorphic) of malware. The experimental analysis shows that our proposed Android malware detection system using reinforcement learning is more robust against adversarial attacks.


DOOM: A Novel Adversarial-DRL-Based Op-Code Level Metamorphic Malware Obfuscator for the Enhancement of IDS

arXiv.org Artificial Intelligence

We designed and developed DOOM (Adversarial-DRL based Opcode level Obfuscator to generate Metamorphic malware), a novel system that uses adversarial deep reinforcement learning to obfuscate malware at the op-code level for the enhancement of IDS. The ultimate goal of DOOM is not to give a potent weapon in the hands of cyber-attackers, but to create defensive-mechanisms against advanced zero-day attacks. Experimental results indicate that the obfuscated malware created by DOOM could effectively mimic multiple-simultaneous zero-day attacks. To the best of our knowledge, DOOM is the first system that could generate obfuscated malware detailed to individual op-code level. DOOM is also the first-ever system to use efficient continuous action control based deep reinforcement learning in the area of malware generation and defense. Experimental results indicate that over 67% of the metamorphic malware generated by DOOM could easily evade detection from even the most potent IDS. This achievement gains significance, as with this, even IDS augment with advanced routing sub-system can be easily evaded by the malware generated by DOOM.


DeepIntent: ImplicitIntent based Android IDS with E2E Deep Learning architecture

arXiv.org Artificial Intelligence

The Intent in Android plays an important role in inter-process and intra-process communications. The implicit Intent that an application could accept are declared in its manifest and are amongst the easiest feature to extract from an apk. Implicit Intents could even be extracted online and in real-time. So far neither the feasibility of developing an Intrusion Detection System solely on implicit Intent has been explored, nor are any benchmarks available of a malware classifier that is based on implicit Intent alone. We demonstrate that despite Intent is implicit and well declared, it can provide very intuitive insights to distinguish malicious from non-malicious applications. We conducted exhaustive experiments with over 40 different end-to-end Deep Learning configurations of Auto-Encoders and Multi-Layer-Perceptron to create a benchmark for a malware classifier that works exclusively on implicit Intent. Using the results from the experiments we create an intrusion detection system using only the implicit Intents and end-to-end Deep Learning architecture. We obtained an area-under-curve statistic of 0.81, and accuracy of 77.2% along with false-positive-rate of 0.11 on Drebin dataset.


Comparison of Deep Learning and the Classical Machine Learning Algorithm for the Malware Detection

arXiv.org Artificial Intelligence

Recently, Deep Learning has been showing promising results in various Artificial Intelligence applications like image recognition, natural language processing, language modeling, neural machine translation, etc. Although, in general, it is computationally more expensive as compared to classical machine learning techniques, their results are found to be more effective in some cases. Therefore, in this paper, we investigated and compared one of the Deep Learning Architecture called Deep Neural Network (DNN) with the classical Random Forest (RF) machine learning algorithm for the malware classification. We studied the performance of the classical RF and DNN with 2, 4 & 7 layers architectures with the four different feature sets, and found that irrespective of the features inputs, the classical RF accuracy outperforms the DNN.


An investigation of a deep learning based malware detection system

arXiv.org Artificial Intelligence

We investigate a Deep Learning based system for malware detection. In the investigation, we experiment with different combination of Deep Learning architectures including Auto-Encoders, and Deep Neural Networks with varying layers over Malicia malware dataset on which earlier studies have obtained an accuracy of (98%) with an acceptable False Positive Rates (1.07%). But these results were done using extensive man-made custom domain features and investing corresponding feature engineering and design efforts. In our proposed approach, besides improving the previous best results (99.21% accuracy and a False Positive Rate of 0.19%) indicates that Deep Learning based systems could deliver an effective defense against malware. Since it is good in automatically extracting higher conceptual features from the data, Deep Learning based systems could provide an effective, general and scalable mechanism for detection of existing and unknown malware.