Goto

Collaborating Authors

 Setaka, Mmasibidi


INJONGO: A Multicultural Intent Detection and Slot-filling Dataset for 16 African Languages

arXiv.org Artificial Intelligence

Slot-filling and intent detection are well-established tasks in Conversational AI. However, current large-scale benchmarks for these tasks often exclude evaluations of low-resource languages and rely on translations from English benchmarks, thereby predominantly reflecting Western-centric concepts. In this paper, we introduce Injongo -- a multicultural, open-source benchmark dataset for 16 African languages with utterances generated by native speakers across diverse domains, including banking, travel, home, and dining. Through extensive experiments, we benchmark the fine-tuning multilingual transformer models and the prompting large language models (LLMs), and show the advantage of leveraging African-cultural utterances over Western-centric utterances for improving cross-lingual transfer from the English language. Experimental results reveal that current LLMs struggle with the slot-filling task, with GPT-4o achieving an average performance of 26 F1-score. In contrast, intent detection performance is notably better, with an average accuracy of 70.6%, though it still falls behind the fine-tuning baselines. Compared to the English language, GPT-4o and fine-tuning baselines perform similarly on intent detection, achieving an accuracy of approximately 81%. Our findings suggest that the performance of LLMs is still behind for many low-resource African languages, and more work is needed to further improve their downstream performance.


IrokoBench: A New Benchmark for African Languages in the Age of Large Language Models

arXiv.org Artificial Intelligence

Despite the widespread adoption of Large language models (LLMs), their remarkable capabilities remain limited to a few high-resource languages. Additionally, many low-resource languages (e.g., African languages) are often evaluated only on basic text classification tasks due to the lack of appropriate or comprehensive benchmarks outside of high-resource languages. In this paper, we introduce IrokoBench--a human-translated benchmark dataset for 16 typologicallydiverse low-resource African languages covering three tasks: natural language inference (AfriXNLI), mathematical reasoning (AfriMGSM), and multi-choice knowledge-based QA (AfriMMLU). We use IrokoBench to evaluate zero-shot, few-shot, and translate-test settings (where test sets are translated into English) across 10 open and four proprietary LLMs. Our evaluation reveals a significant performance gap between high-resource languages (such as English and French) and low-resource African languages. We observe a significant performance gap between open and proprietary models, with the highest performing open model, Aya-101 only at 58% of the best-performing proprietary model GPT-4o performance. Machine translating the test set to English before evaluation helped to close the gap for larger models that are English-centric, like LLaMa 3 70B. These findings suggest that more efforts are needed to develop and adapt LLMs for African languages.