Sesodia, Magnus
AnnoCaseLaw: A Richly-Annotated Dataset For Benchmarking Explainable Legal Judgment Prediction
Sesodia, Magnus, Petrova, Alina, Armour, John, Lukasiewicz, Thomas, Camburu, Oana-Maria, Dokania, Puneet K., Torr, Philip, de Witt, Christian Schroeder
Legal systems worldwide continue to struggle with overwhelming caseloads, limited judicial resources, and growing complexities in legal proceedings. Artificial intelligence (AI) offers a promising solution, with Legal Judgment Prediction (LJP) -- the practice of predicting a court's decision from the case facts -- emerging as a key research area. However, existing datasets often formulate the task of LJP unrealistically, not reflecting its true difficulty. They also lack high-quality annotation essential for legal reasoning and explainability. To address these shortcomings, we introduce AnnoCaseLaw, a first-of-its-kind dataset of 471 meticulously annotated U.S. Appeals Court negligence cases. Each case is enriched with comprehensive, expert-labeled annotations that highlight key components of judicial decision making, along with relevant legal concepts. Our dataset lays the groundwork for more human-aligned, explainable LJP models. We define three legally relevant tasks: (1) judgment prediction; (2) concept identification; and (3) automated case annotation, and establish a performance baseline using industry-leading large language models (LLMs). Our results demonstrate that LJP remains a formidable task, with application of legal precedent proving particularly difficult. Code and data are available at https://github.com/anonymouspolar1/annocaselaw.