Serina, I.
An Approach to Temporal Planning and Scheduling in Domains with Predictable Exogenous Events
Gerevini, A., Saetti, A., Serina, I.
The treatment of exogenous events in planning is practically important in many real-world domains where the preconditions of certain plan actions are affected by such events. In this paper we focus on planning in temporal domains with exogenous events that happen at known times, imposing the constraint that certain actions in the plan must be executed during some predefined time windows. When actions have durations, handling such temporal constraints adds an extra difficulty to planning. We propose an approach to planning in these domains which integrates constraint-based temporal reasoning into a graph-based planning framework using local search. Our techniques are implemented in a planner that took part in the 4th International Planning Competition (IPC-4). A statistical analysis of the results of IPC-4 demonstrates the effectiveness of our approach in terms of both CPU-time and plan quality. Additional experiments show the good performance of the temporal reasoning techniques integrated into our planner.
Planning Through Stochastic Local Search and Temporal Action Graphs in LPG
Gerevini, A., Saetti, A., Serina, I.
We present some techniques for planning in domains specified with the recent standard language PDDL2.1, supporting 'durative actions' and numerical quantities. These techniques are implemented in LPG, a domain-independent planner that took part in the 3rd International Planning Competition (IPC). LPG is an incremental, any time system producing multi-criteria quality plans. The core of the system is based on a stochastic local search method and on a graph-based representation called 'Temporal Action Graphs' (TA-graphs). This paper focuses on temporal planning, introducing TA-graphs and proposing some techniques to guide the search in LPG using this representation. The experimental results of the 3rd IPC, as well as further results presented in this paper, show that our techniques can be very effective. Often LPG outperforms all other fully-automated planners of the 3rd IPC in terms of speed to derive a solution, or quality of the solutions that can be produced.
An Approach to Temporal Planning and Scheduling in Domains with Predictable Exogenous Events
Gerevini, A., Saetti, A., Serina, I.
The treatment of exogenous events in planning is practically important in many real-world domains where the preconditions of certain plan actions are affected by such events. In this paper we focus on planning in temporal domains with exogenous events that happen at known times, imposing the constraint that certain actions in the plan must be executed during some predefined time windows. When actions have durations, handling such temporal constraints adds an extra difficulty to planning. We propose an approach to planning in these domains which integrates constraint-based temporal reasoning into a graph-based planning framework using local search. Our techniques are implemented in a planner that took part in the 4th International Planning Competition (IPC-4). A statistical analysis of the results of IPC-4 demonstrates the effectiveness of our approach in terms of both CPU-time and plan quality. Additional experiments show the good performance of the temporal reasoning techniques integrated into our planner.
Planning Through Stochastic Local Search and Temporal Action Graphs in LPG
Gerevini, A., Saetti, A., Serina, I.
We present some techniques for planning in domains specified with the recent standard language PDDL2.1, supporting 'durative actions' and numerical quantities. These techniques are implemented in LPG, a domain-independent planner that took part in the 3rd International Planning Competition (IPC). LPG is an incremental, any time system producing multi-criteria quality plans. The core of the system is based on a stochastic local search method and on a graph-based representation called 'Temporal Action Graphs' (TA-graphs). This paper focuses on temporal planning, introducing TA-graphs and proposing some techniques to guide the search in LPG using this representation. The experimental results of the 3rd IPC, as well as further results presented in this paper, show that our techniques can be very effective. Often LPG outperforms all other fully-automated planners of the 3rd IPC in terms of speed to derive a solution, or quality of the solutions that can be produced.