Goto

Collaborating Authors

 Seo, Seungyeon


Multi-aspect Depression Severity Assessment via Inductive Dialogue System

arXiv.org Artificial Intelligence

With the advancement of chatbots and the growing demand for automatic depression detection, identifying depression in patient conversations has gained more attention. However, prior methods often assess depression in a binary way or only a single score without diverse feedback and lack focus on enhancing dialogue responses. In this paper, we present a novel task of multi-aspect depression severity assessment via an inductive dialogue system (MaDSA), evaluating a patient's depression level on multiple criteria by incorporating an assessment-aided response generation. Further, we propose a foundational system for MaDSA, which induces psychological dialogue responses with an auxiliary emotion classification task within a hierarchical severity assessment structure. We synthesize the conversational dataset annotated with eight aspects of depression severity alongside emotion labels, proven robust via human evaluations. Experimental results show potential for our preliminary work on MaDSA.


DORIC : Domain Robust Fine-Tuning for Open Intent Clustering through Dependency Parsing

arXiv.org Artificial Intelligence

We present our work on Track 2 in the Dialog System Technology Challenges 11 (DSTC11). DSTC11-Track2 aims to provide a benchmark for zero-shot, cross-domain, intent-set induction. In the absence of in-domain training dataset, robust utterance representation that can be used across domains is necessary to induce users' intentions. To achieve this, we leveraged a multi-domain dialogue dataset to fine-tune the language model and proposed extracting Verb-Object pairs to remove the artifacts of unnecessary information. Furthermore, we devised the method that generates each cluster's name for the explainability of clustered results. Our approach achieved 3rd place in the precision score and showed superior accuracy and normalized mutual information (NMI) score than the baseline model on various domain datasets.