Senn, Walter
Order from chaos: Interplay of development and learning in recurrent networks of structured neurons
Kriener, Laura, Völk, Kristin, von Hünerbein, Ben, Benitez, Federico, Senn, Walter, Petrovici, Mihai A.
Behavior can be described as a temporal sequence of actions driven by neural activity. To learn complex sequential patterns in neural networks, memories of past activities need to persist on significantly longer timescales than relaxation times of single-neuron activity. While recurrent networks can produce such long transients, training these networks in a biologically plausible way is challenging. One approach has been reservoir computing, where only weights from a recurrent network to a readout are learned. Other models achieve learning of recurrent synaptic weights using propagated errors. However, their biological plausibility typically suffers from issues with locality, resource allocation or parameter scales and tuning. We suggest that many of these issues can be alleviated by considering dendritic information storage and computation. By applying a fully local, always-on plasticity rule we are able to learn complex sequences in a recurrent network comprised of two populations. Importantly, our model is resource-efficient, enabling the learning of complex sequences using only a small number of neurons. We demonstrate these features in a mock-up of birdsong learning, in which our networks first learn a long, non-Markovian sequence that they can then reproduce robustly despite external disturbances.
Learning beyond sensations: how dreams organize neuronal representations
Deperrois, Nicolas, Petrovici, Mihai A., Senn, Walter, Jordan, Jakob
Semantic representations in higher sensory cortices form the basis for robust, yet flexible behavior. These representations are acquired over the course of development in an unsupervised fashion and continuously maintained over an organism's lifespan. Predictive learning theories propose that these representations emerge from predicting or reconstructing sensory inputs. However, brains are known to generate virtual experiences, such as during imagination and dreaming, that go beyond previously experienced inputs. Here, we suggest that virtual experiences may be just as relevant as actual sensory inputs in shaping cortical representations. In particular, we discuss two complementary learning principles that organize representations through the generation of virtual experiences. First, "adversarial dreaming" proposes that creative dreams support a cortical implementation of adversarial learning in which feedback and feedforward pathways engage in a productive game of trying to fool each other. Second, "contrastive dreaming" proposes that the invariance of neuronal representations to irrelevant factors of variation is acquired by trying to map similar virtual experiences together via a contrastive learning process. These principles are compatible with known cortical structure and dynamics and the phenomenology of sleep thus providing promising directions to explain cortical learning beyond the classical predictive learning paradigm.
Learning efficient backprojections across cortical hierarchies in real time
Max, Kevin, Kriener, Laura, García, Garibaldi Pineda, Nowotny, Thomas, Senn, Walter, Petrovici, Mihai A.
Models of sensory processing and learning in the cortex need to efficiently assign credit to synapses in all areas. In deep learning, a known solution is error backpropagation, which however requires biologically implausible weight transport from feed-forward to feedback paths. We introduce Phaseless Alignment Learning (PAL), a bio-plausible method to learn efficient feedback weights in layered cortical hierarchies. This is achieved by exploiting the noise naturally found in biophysical systems as an additional carrier of information. In our dynamical system, all weights are learned simultaneously with always-on plasticity and using only information locally available to the synapses. Our method is completely phase-free (no forward and backward passes or phased learning) and allows for efficient error propagation across multi-layer cortical hierarchies, while maintaining biologically plausible signal transport and learning. Our method is applicable to a wide class of models and improves on previously known biologically plausible ways of credit assignment: compared to random synaptic feedback, it can solve complex tasks with less neurons and learn more useful latent representations. We demonstrate this on various classification tasks using a cortical microcircuit model with prospective coding.
Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons
Haider, Paul, Ellenberger, Benjamin, Kriener, Laura, Jordan, Jakob, Senn, Walter, Petrovici, Mihai A.
The response time of physical computational elements is finite, and neurons are no exception. In hierarchical models of cortical networks each layer thus introduces a response lag. This inherent property of physical dynamical systems results in delayed processing of stimuli and causes a timing mismatch between network output and instructive signals, thus afflicting not only inference, but also learning. We introduce Latent Equilibrium, a new framework for inference and learning in networks of slow components which avoids these issues by harnessing the ability of biological neurons to phase-advance their output with respect to their membrane potential. This principle enables quasi-instantaneous inference independent of network depth and avoids the need for phased plasticity or computationally expensive network relaxation phases. We jointly derive disentangled neuron and synapse dynamics from a prospective energy function that depends on a network's generalized position and momentum. The resulting model can be interpreted as a biologically plausible approximation of error backpropagation in deep cortical networks with continuous-time, leaky neuronal dynamics and continuously active, local plasticity. We demonstrate successful learning of standard benchmark datasets, achieving competitive performance using both fully-connected and convolutional architectures, and show how our principle can be applied to detailed models of cortical microcircuitry. Furthermore, we study the robustness of our model to spatio-temporal substrate imperfections to demonstrate its feasibility for physical realization, be it in vivo or in silico.
Dendritic cortical microcircuits approximate the backpropagation algorithm
Sacramento, João, Costa, Rui Ponte, Bengio, Yoshua, Senn, Walter
Deep learning has seen remarkable developments over the last years, many of them inspired by neuroscience. However, the main learning mechanism behind these advances – error backpropagation – appears to be at odds with neurobiology. Here, we introduce a multilayer neuronal network model with simplified dendritic compartments in which error-driven synaptic plasticity adapts the network towards a global desired output. In contrast to previous work our model does not require separate phases and synaptic learning is driven by local dendritic prediction errors continuously in time. Such errors originate at apical dendrites and occur due to a mismatch between predictive input from lateral interneurons and activity from actual top-down feedback. Through the use of simple dendritic compartments and different cell-types our model can represent both error and normal activity within a pyramidal neuron. We demonstrate the learning capabilities of the model in regression and classification tasks, and show analytically that it approximates the error backpropagation algorithm. Moreover, our framework is consistent with recent observations of learning between brain areas and the architecture of cortical microcircuits. Overall, we introduce a novel view of learning on dendritic cortical circuits and on how the brain may solve the long-standing synaptic credit assignment problem.
Dendritic cortical microcircuits approximate the backpropagation algorithm
Sacramento, João, Costa, Rui Ponte, Bengio, Yoshua, Senn, Walter
Deep learning has seen remarkable developments over the last years, many of them inspired by neuroscience. However, the main learning mechanism behind these advances – error backpropagation – appears to be at odds with neurobiology. Here, we introduce a multilayer neuronal network model with simplified dendritic compartments in which error-driven synaptic plasticity adapts the network towards a global desired output. In contrast to previous work our model does not require separate phases and synaptic learning is driven by local dendritic prediction errors continuously in time. Such errors originate at apical dendrites and occur due to a mismatch between predictive input from lateral interneurons and activity from actual top-down feedback. Through the use of simple dendritic compartments and different cell-types our model can represent both error and normal activity within a pyramidal neuron. We demonstrate the learning capabilities of the model in regression and classification tasks, and show analytically that it approximates the error backpropagation algorithm. Moreover, our framework is consistent with recent observations of learning between brain areas and the architecture of cortical microcircuits. Overall, we introduce a novel view of learning on dendritic cortical circuits and on how the brain may solve the long-standing synaptic credit assignment problem.
Stochasticity from function - why the Bayesian brain may need no noise
Dold, Dominik, Bytschok, Ilja, Kungl, Akos F., Baumbach, Andreas, Breitwieser, Oliver, Senn, Walter, Schemmel, Johannes, Meier, Karlheinz, Petrovici, Mihai A.
An increasing body of evidence suggests that the trial-to-trial variability of spiking activity in the brain is not mere noise, but rather the reflection of a sampling-based encoding scheme for probabilistic computing. Since the precise statistical properties of neural activity are important in this context, many models assume an ad-hoc source of well-behaved, explicit noise, either on the input or on the output side of single neuron dynamics, most often assuming an independent Poisson process in either case. However, these assumptions are somewhat problematic: neighboring neurons tend to share receptive fields, rendering both their input and their output correlated; at the same time, neurons are known to behave largely deterministically, as a function of their membrane potential and conductance. We suggest that spiking neural networks may, in fact, have no need for noise to perform sampling-based Bayesian inference. We study analytically the effect of auto- and cross-correlations in functionally Bayesian spiking networks and demonstrate how their effect translates to synaptic interaction strengths, rendering them controllable through synaptic plasticity. This allows even small ensembles of interconnected deterministic spiking networks to simultaneously and co-dependently shape their output activity through learning, enabling them to perform complex Bayesian computation without any need for noise, which we demonstrate in silico, both in classical simulation and in neuromorphic emulation. These results close a gap between the abstract models and the biology of functionally Bayesian spiking networks, effectively reducing the architectural constraints imposed on physical neural substrates required to perform probabilistic computing, be they biological or artificial.
Sequence learning with hidden units in spiking neural networks
Brea, Johanni, Senn, Walter, Pfister, Jean-pascal
We consider a statistical framework in which recurrent networks of spiking neurons learn to generate spatio-temporal spike patterns. Given biologically realistic stochastic neuronal dynamics we derive a tractable learning rule for the synaptic weights towards hidden and visible neurons that leads to optimal recall of the training sequences. We show that learning synaptic weights towards hidden neurons significantly improves the storing capacity of the network. Furthermore, we derive an approximate online learning rule and show that our learning rule is consistent with Spike-Timing Dependent Plasticity in that if a presynaptic spike shortly precedes a postynaptic spike, potentiation is induced and otherwise depression is elicited.