Seng, Jonas
Scaling Probabilistic Circuits via Data Partitioning
Seng, Jonas, Busch, Florian Peter, Prasad, Pooja, Dhami, Devendra Singh, Mundt, Martin, Kersting, Kristian
Probabilistic circuits (PCs) enable us to learn joint distributions over a set of random variables and to perform various probabilistic queries in a tractable fashion. Though the tractability property allows PCs to scale beyond non-tractable models such as Bayesian Networks, scaling training and inference of PCs to larger, real-world datasets remains challenging. To remedy the situation, we show how PCs can be learned across multiple machines by recursively partitioning a distributed dataset, thereby unveiling a deep connection between PCs and federated learning (FL). This leads to federated circuits (FCs) -- a novel and flexible federated learning (FL) framework that (1) allows one to scale PCs on distributed learning environments (2) train PCs faster and (3) unifies for the first time horizontal, vertical, and hybrid FL in one framework by re-framing FL as a density estimation problem over distributed datasets. We demonstrate FC's capability to scale PCs on various large-scale datasets. Also, we show FC's versatility in handling horizontal, vertical, and hybrid FL within a unified framework on multiple classification tasks.
Systems with Switching Causal Relations: A Meta-Causal Perspective
Willig, Moritz, Tobiasch, Tim Nelson, Busch, Florian Peter, Seng, Jonas, Dhami, Devendra Singh, Kersting, Kristian
Most work on causality in machine learning assumes that causal relationships are driven by a constant underlying process. However, the flexibility of agents' actions or tipping points in the environmental process can change the qualitative dynamics of the system. As a result, new causal relationships may emerge, while existing ones change or disappear, resulting in an altered causal graph. To analyze these qualitative changes on the causal graph, we propose the concept of meta-causal states, which groups classical causal models into clusters based on equivalent qualitative behavior and consolidates specific mechanism parameterizations. We demonstrate how meta-causal states can be inferred from observed agent behavior, and discuss potential methods for disentangling these states from unlabeled data. Finally, we direct our analysis towards the application of a dynamical system, showing that meta-causal states can also emerge from inherent system dynamics, and thus constitute more than a context-dependent framework in which mechanisms emerge only as a result of external factors.
FEATHERS: Federated Architecture and Hyperparameter Search
Seng, Jonas, Prasad, Pooja, Mundt, Martin, Dhami, Devendra Singh, Kersting, Kristian
Deep neural architectures have profound impact on achieved performance in many of today's AI tasks, yet, their design still heavily relies on human prior knowledge and experience. Neural architecture search (NAS) together with hyperparameter optimization (HO) helps to reduce this dependence. However, state of the art NAS and HO rapidly become infeasible with increasing amount of data being stored in a distributed fashion, typically violating data privacy regulations such as GDPR and CCPA. As a remedy, we introduce FEATHERS - $\textbf{FE}$derated $\textbf{A}$rchi$\textbf{T}$ecture and $\textbf{H}$yp$\textbf{ER}$parameter $\textbf{S}$earch, a method that not only optimizes both neural architectures and optimization-related hyperparameters jointly in distributed data settings, but further adheres to data privacy through the use of differential privacy (DP). We show that FEATHERS efficiently optimizes architectural and optimization-related hyperparameters alike, while demonstrating convergence on classification tasks at no detriment to model performance when complying with privacy constraints.
Continual Causal Abstractions
Zečević, Matej, Willig, Moritz, Seng, Jonas, Busch, Florian Peter
This short paper discusses continually updated causal abstractions as a potential direction of future research. The key idea is to revise the existing level of causal abstraction to a different level of detail that is both consistent with the history of observed data and more effective in solving a given task.