Sen, Shreyas
Predicting and Understanding College Student Mental Health with Interpretable Machine Learning
Chowdhury, Meghna Roy, Xuan, Wei, Sen, Shreyas, Zhao, Yixue, Ding, Yi
Mental health issues among college students have reached critical levels, significantly impacting academic performance and overall wellbeing. Predicting and understanding mental health status among college students is challenging due to three main factors: the necessity for large-scale longitudinal datasets, the prevalence of black-box machine learning models lacking transparency, and the tendency of existing approaches to provide aggregated insights at the population level rather than individualized understanding. To tackle these challenges, this paper presents I-HOPE, the first Interpretable Hierarchical mOdel for Personalized mEntal health prediction. I-HOPE is a two-stage hierarchical model, validated on the College Experience Study, the longest longitudinal mobile sensing dataset. This dataset spans five years and captures data from both pre-pandemic periods and the COVID-19 pandemic. I-HOPE connects raw behavioral features to mental health status through five defined behavioral categories as interaction labels. This approach achieves a prediction accuracy of 91%, significantly surpassing the 60-70% accuracy of baseline methods. In addition, our model distills complex patterns into interpretable and individualized insights, enabling the future development of tailored interventions and improving mental health support. The code is available at https://github.com/roycmeghna/I-HOPE.
Exploiting Inherent Error-Resiliency of Neuromorphic Computing to achieve Extreme Energy-Efficiency through Mixed-Signal Neurons
Chatterjee, Baibhab, Panda, Priyadarshini, Maity, Shovan, Biswas, Ayan, Roy, Kaushik, Sen, Shreyas
Neuromorphic computing, inspired by the brain, promises extreme efficiency for certain classes of learning tasks, such as classification and pattern recognition. The performance and power consumption of neuromorphic computing depends heavily on the choice of the neuron architecture. Digital neurons (Dig-N) are conventionally known to be accurate and efficient at high speed, while suffering from high leakage currents from a large number of transistors in a large design. On the other hand, analog/mixed-signal neurons are prone to noise, variability and mismatch, but can lead to extremely low-power designs. In this work, we will analyze, compare and contrast existing neuron architectures with a proposed mixed-signal neuron (MS-N) in terms of performance, power and noise, thereby demonstrating the applicability of the proposed mixed-signal neuron for achieving extreme energy-efficiency in neuromorphic computing. The proposed MS-N is implemented in 65 nm CMOS technology and exhibits > 100X better energy-efficiency across all frequencies over two traditional digital neurons synthesized in the same technology node. We also demonstrate that the inherent error-resiliency of a fully connected or even convolutional neural network (CNN) can handle the noise as well as the manufacturing non-idealities of the MS-N up to certain degrees. Notably, a system-level implementation on MNIST datasets exhibits a worst-case increase in classification error by 2.1% when the integrated noise power in the bandwidth is ~ 0.1 uV2, along with +-3{\sigma} amount of variation and mismatch introduced in the transistor parameters for the proposed neuron with 8-bit precision.
RF-PUF: Enhancing IoT Security through Authentication of Wireless Nodes using In-situ Machine Learning
Chatterjee, Baibhab, Das, Debayan, Maity, Shovan, Sen, Shreyas
Traditional authentication in radio-frequency (RF) systems enable secure data transmission within a network through techniques such as digital signatures and hash-based message authentication codes (HMAC). However, these techniques may not prevent a malicious attacker from stealing the secret encryption keys using invasive, modeling or side channel attacks. Physically unclonable functions (PUF), on the other hand, can exploit manufacturing process variations to uniquely identify silicon chips which makes a PUF-based system extremely robust and secure at low cost, as it is practically impossible to replicate the same silicon characteristics across dies. In this paper, we present RF- PUF: a deep neural network based framework that allows real-time authentication of wireless nodes, using the effects of inherent process variation on RF properties of the wireless transmitters (Tx), detected through in-situ machine learning at the receiver (Rx) end. The proposed method utilizes the already-existing asymmetric RF communication framework and does not require any additional circuitry for PUF generation or feature extraction. Simulation results involving the process variations in a standard 65 nm technology node, and features such as LO offset and I-Q imbalance detected with a neural network having 50 neurons in the hidden layer indicate that the framework can distinguish up to 4800 transmitters with an accuracy of 99.9% (~ 99% for 10,000 transmitters) under varying channel conditions, and without the need for traditional preambles.
RF-PUF: IoT Security Enhancement through Authentication of Wireless Nodes using In-situ Machine Learning
Chatterjee, Baibhab, Das, Debayan, Sen, Shreyas
Physical unclonable functions (PUF) in silicon exploit die-to-die manufacturing variations during fabrication for uniquely identifying each die. Since it is practically a hard problem to recreate exact silicon features across dies, a PUFbased authentication system is robust, secure and cost-effective, as long as bias removal and error correction are taken into account. In this work, we utilize the effects of inherent process variation on analog and radio-frequency (RF) properties of multiple wireless transmitters (Tx) in a sensor network, and detect the features at the receiver (Rx) using a deep neural network based framework. The proposed mechanism/framework, called RF-PUF, harnesses already existing RF communication hardware and does not require any additional PUF-generation circuitry in the Tx for practical implementation. Simulation results indicate that the RF-PUF framework can distinguish up to 10000 transmitters (with standard foundry defined variations for a 65 nm process, leading to non-idealities such as LO offset and I-Q imbalance) under varying channel conditions, with a probability of false detection < 10e-3
An Energy-Efficient Mixed-Signal Neuron for Inherently Error-Resilient Neuromorphic Systems
Chatterjee, Baibhab, Panda, Priyadarshini, Maity, Shovan, Roy, Kaushik, Sen, Shreyas
This work presents the design and analysis of a mixed-signal neuron (MS-N) for convolutional neural networks (CNN) and compares its performance with a digital neuron (Dig-N) in terms of operating frequency, power and noise. The circuit-level implementation of the MS-N in 65 nm CMOS technology exhibits 2-3 orders of magnitude better energy-efficiency over Dig-N for neuromorphic computing applications - especially at low frequencies due to the high leakage currents from many transistors in Dig-N. The inherent error-resiliency of CNN is exploited to handle the thermal and flicker noise of MS-N. A system-level analysis using a cohesive circuit-algorithmic framework on MNIST and CIFAR-10 datasets demonstrate an increase of 3% in worst-case classification error for MNIST when the integrated noise power in the bandwidth is ~ 1 {\mu}V2.