Goto

Collaborating Authors

 Sen, Rathijit


JoinBoost: Grow Trees Over Normalized Data Using Only SQL

arXiv.org Artificial Intelligence

Although dominant for tabular data, ML libraries that train tree models over normalized databases (e.g., LightGBM, XGBoost) require the data to be denormalized as a single table, materialized, and exported. This process is not scalable, slow, and poses security risks. In-DB ML aims to train models within DBMSes to avoid data movement and provide data governance. Rather than modify a DBMS to support In-DB ML, is it possible to offer competitive tree training performance to specialized ML libraries...with only SQL? We present JoinBoost, a Python library that rewrites tree training algorithms over normalized databases into pure SQL. It is portable to any DBMS, offers performance competitive with specialized ML libraries, and scales with the underlying DBMS capabilities. JoinBoost extends prior work from both algorithmic and systems perspectives. Algorithmically, we support factorized gradient boosting, by updating the $Y$ variable to the residual in the non-materialized join result. Although this view update problem is generally ambiguous, we identify addition-to-multiplication preserving, the key property of variance semi-ring to support rmse, the most widely used criterion. System-wise, we identify residual updates as a performance bottleneck. Such overhead can be natively minimized on columnar DBMSes by creating a new column of residual values and adding it as a projection. We validate this with two implementations on DuckDB, with no or minimal modifications to its internals for portability. Our experiment shows that JoinBoost is 3x (1.1x) faster for random forests (gradient boosting) compared to LightGBM, and over an order magnitude faster than state-of-the-art In-DB ML systems. Further, JoinBoost scales well beyond LightGBM in terms of the # features, DB size (TPC-DS SF=1000), and join graph complexity (galaxy schemas).


Query Processing on Tensor Computation Runtimes

arXiv.org Artificial Intelligence

The huge demand for computation in artificial intelligence (AI) is driving unparalleled investments in hardware and software systems for AI. This leads to an explosion in the number of specialized hardware devices, which are now offered by major cloud vendors. By hiding the low-level complexity through a tensor-based interface, tensor computation runtimes (TCRs) such as PyTorch allow data scientists to efficiently exploit the exciting capabilities offered by the new hardware. In this paper, we explore how database management systems can ride the wave of innovation happening in the AI space. We design, build, and evaluate Tensor Query Processor (TQP): TQP transforms SQL queries into tensor programs and executes them on TCRs. TQP is able to run the full TPC-H benchmark by implementing novel algorithms for relational operators on the tensor routines. At the same time, TQP can support various hardware while only requiring a fraction of the usual development effort. Experiments show that TQP can improve query execution time by up to 10$\times$ over specialized CPU- and GPU-only systems. Finally, TQP can accelerate queries mixing ML predictions and SQL end-to-end, and deliver up to 9$\times$ speedup over CPU baselines.


The Tensor Data Platform: Towards an AI-centric Database System

arXiv.org Artificial Intelligence

Database engines have historically absorbed many of the innovations in data processing, adding features to process graph data, XML, object oriented, and text among many others. In this paper, we make the case that it is time to do the same for AI -- but with a twist! While existing approaches have tried to achieve this by integrating databases with external ML tools, in this paper we claim that achieving a truly AI-centric database requires moving the DBMS engine, at its core, from a relational to a tensor abstraction. This allows us to: (1) support multi-modal data processing such as images, videos, audio, text as well as relational; (2) leverage the wellspring of innovation in HW and runtimes for tensor computation; and (3) exploit automatic differentiation to enable a novel class of "trainable" queries that can learn to perform a task. To support the above scenarios, we introduce TDP: a system that builds upon our prior work mapping relational queries to tensors. Thanks to a tighter integration with the tensor runtime, TDP is able to provide a broader coverage of new emerging scenarios requiring access to multi-modal data and automatic differentiation.


Share the Tensor Tea: How Databases can Leverage the Machine Learning Ecosystem

arXiv.org Artificial Intelligence

We demonstrate Tensor Query Processor (TQP): a query processor that automatically compiles relational operators into tensor programs. By leveraging tensor runtimes such as PyTorch, TQP is able to: (1) integrate with ML tools (e.g., Pandas for data ingestion, Tensorboard for visualization); (2) target different hardware (e.g., CPU, GPU) and software (e.g., browser) backends; and (3) end-to-end accelerate queries containing both relational and ML operators. TQP is generic enough to support the TPC-H benchmark, and it provides performance that is comparable to, and often better than, that of specialized CPU and GPU query processors.