Sen, Procheta
LIPEx-Locally Interpretable Probabilistic Explanations-To Look Beyond The True Class
Zhu, Hongbo, Cangelosi, Angelo, Sen, Procheta, Mukherjee, Anirbit
In this work, we instantiate a novel perturbation-based multi-class explanation framework, LIPEx (Locally Interpretable Probabilistic Explanation). We demonstrate that LIPEx not only locally replicates the probability distributions output by the widely used complex classification models but also provides insight into how every feature deemed to be important affects the prediction probability for each of the possible classes. We achieve this by defining the explanation as a matrix obtained via regression with respect to the Hellinger distance in the space of probability distributions. Ablation tests on text and image data, show that LIPEx-guided removal of important features from the data causes more change in predictions for the underlying model than similar tests based on other saliency-based or feature importance-based Explainable AI (XAI) methods. It is also shown that compared to LIME, LIPEx is more data efficient in terms of using a lesser number of perturbations of the data to obtain a reliable explanation. This data-efficiency is seen to manifest as LIPEx being able to compute its explanation matrix around 53% faster than all-class LIME, for classification experiments with text data.
Can Word Sense Distribution Detect Semantic Changes of Words?
Tang, Xiaohang, Zhou, Yi, Aida, Taichi, Sen, Procheta, Bollegala, Danushka
Semantic Change Detection (SCD) of words is an important task for various NLP applications that must make time-sensitive predictions. Some words are used over time in novel ways to express new meanings, and these new meanings establish themselves as novel senses of existing words. On the other hand, Word Sense Disambiguation (WSD) methods associate ambiguous words with sense ids, depending on the context in which they occur. Given this relationship between WSD and SCD, we explore the possibility of predicting whether a target word has its meaning changed between two corpora collected at different time steps, by comparing the distributions of senses of that word in each corpora. For this purpose, we use pretrained static sense embeddings to automatically annotate each occurrence of the target word in a corpus with a sense id. Next, we compute the distribution of sense ids of a target word in a given corpus. Finally, we use different divergence or distance measures to quantify the semantic change of the target word across the two given corpora. Our experimental results on SemEval 2020 Task 1 dataset show that word sense distributions can be accurately used to predict semantic changes of words in English, German, Swedish and Latin.
Lexical Entrainment for Conversational Systems
Shi, Zhengxiang, Sen, Procheta, Lipani, Aldo
Conversational agents have become ubiquitous in assisting with daily tasks, and are expected to possess human-like features. One such feature is lexical entrainment (LE), a phenomenon in which speakers in human-human conversations tend to naturally and subconsciously align their lexical choices with those of their interlocutors, leading to more successful and engaging conversations. As an example, if a digital assistant replies 'Your appointment for Jinling Noodle Pub is at 7 pm' to the question 'When is my reservation for Jinling Noodle Bar today?', it may feel as though the assistant is trying to correct the speaker, whereas a response of 'Your reservation for Jinling Noodle Bar is at 7 pm' would likely be perceived as more positive. This highlights the importance of LE in establishing a shared terminology for maximum clarity and reducing ambiguity in conversations. However, we demonstrate in this work that current response generation models do not adequately address this crucial humanlike phenomenon. To address this, we propose a new dataset, named MULTIWOZ-ENTR, and a measure for LE for conversational systems. Additionally, we suggest a way to explicitly integrate LE into conversational systems with two new tasks, a LE extraction task and a LE generation task. We also present two baseline approaches for the LE extraction task, which aim to detect LE expressions from dialogue contexts.
Automated Argument Generation from Legal Facts
Tuvey, Oscar, Sen, Procheta
The count of pending cases has shown an exponential rise across nations (e.g., with more than 10 million pending cases in India alone). The main issue lies in the fact that the number of cases submitted to the law system is far greater than the available number of legal professionals present in a country. Given this worldwide context, the utilization of AI technology has gained paramount importance to enhance the efficiency and speed of legal procedures. In this study we partcularly focus on helping legal professionals in the process of analyzing a legal case. Our specific investigation delves into harnessing the generative capabilities of open-sourced large language models to create arguments derived from the facts present in legal cases. Experimental results show that the generated arguments from the best performing method have on average 63% overlap with the benchmark set gold standard annotations.